
Intel® Itanium™ Processor-
specific Application Binary
Interface (ABI)

May 2001

Document Number: 245370-003

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any
intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no
liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties
relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are
not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Itanium processor may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling
1-800-548-4725, or by visiting Intel’s website at http://developer.intel.com/design/litcentr.

Itanium and i386 are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other brands and names may be claimed as the property of others.

Copyright © 2001, Intel Corporation.

Contents
1 Introduction...1-1

1.1 The Intel® Itanium™ Architecture and the System V ABI1-1
1.2 How to Use the System V ABI for Intel® Itanium™ Processors............1-1
1.3 Evolution of the ABI Specification ...1-2
1.4 Additional Documents ...1-2

2 Software Installation...2-1

3 Low-level System Information...3-1
3.1 Introduction..3-1
3.2 Machine Interface..3-1

3.2.1 Fundamental Types ..3-1
3.3 Operating System Interface...3-2

3.3.1 Exception Interface ...3-2
3.3.2 Signal Delivery ..3-3
3.3.3 Signal Handler Interface..3-5
3.3.4 Debugging Support ...3-6
3.3.5 Process Startup...3-6

4 Object Files ...4-1
4.1 ELF Header ...4-1

4.1.1 Machine Information..4-1
4.2 Sections...4-3

4.2.1 Section Types ...4-3
4.2.2 Section Attribute Flags ..4-4
4.2.3 Special Sections..4-4
4.2.4 Architecture Extensions ..4-6

4.3 Relocations..4-6
4.3.1 Relocation Types ..4-6

5 Program Loading and Dynamic Linking...5-1
5.1 Program Header..5-1
5.2 Program Loading...5-1

5.2.1 Linktime and Runtime Addresses ...5-4
5.2.2 Initializations..5-4

5.3 Dynamic Linking ..5-4
5.3.1 Dynamic Linker ...5-4
5.3.2 Dynamic Section ...5-5
5.3.3 Shared Object Dependencies ...5-5
5.3.4 Global Offset Table ...5-6
5.3.5 Function Addresses ..5-6
5.3.6 Procedure Linkage Table ..5-7
5.3.7 Initialization and Termination Functions..............................5-10

6 Libraries...6-1
6.1 Unwind Library Interface ...6-1

6.1.1 Exception Handler Framework..6-1
6.1.2 Data Structures ...6-3
Intel® Itanium™ Processor-specific Application Binary Interface (ABI) iii

6.1.3 Throwing an Exception ...6-5
6.1.4 Exception Object Management ...6-7
6.1.5 Context Management..6-7
6.1.6 Personality Routine ...6-9

7 Miscellaneous ...7-1
7.1 Introduction ...7-1
7.2 Development Environment..7-1

7.2.1 Pre-defined Preprocessor Symbols7-1
7.2.2 Pre-defined Preprocessor Assertions7-1
7.2.3 Compiler Pragmas ..7-2

7.3 ILP32 ABI ..7-3
7.3.1 Objectives of the 32-bit Little-endian Runtime Architecture ..7-3
7.3.2 Changes from the 64-bit Software Conventions7-3
7.3.3 Addressing and Protection ..7-4
7.3.4 Data Allocation ..7-4
7.3.5 Local Memory Stack Variables..7-4
7.3.6 Parameter Passing ...7-4

7.4 Synchronization Primitives ..7-4
7.4.1 Atomic Fetch-and-op Operations ..7-5
7.4.2 Atomic Op-and-fetch Operations...7-6
7.4.3 Atomic Compare-and-swap Operation..................................7-6
7.4.4 Atomic Synchronize Operation..7-6
7.4.5 Atomic Lock-test-and-set Operation......................................7-7
7.4.6 Atomic Lock_release Operation ..7-7

7.5 Thread-Local Storage ...7-7
7.5.1 C/C++ Programming Interface ..7-7
7.5.2 Compile-time Allocation of Thread-Local Storage.................7-8
7.5.3 Linker Treatment of Thread-Local Storage Sections7-9
7.5.4 Runtime Allocation of Thread-Local Storage7-10
7.5.5 Code Sequences for Accessing Thread-Local Variables....7-13
7.5.6 ELF Relocations for Thread-Local Storage.........................7-15
7.5.7 TLS Variable References..7-15

Figures

3-1 Double-extended (80-bit) Floating-point Formats ..3-2
4-1 Instruction Bundle Layout...4-7
4-2 Relocatable Fields..4-8
5-1 Example Executable File..5-2
5-2 Example Program Header Segments ..5-2
5-3 Example Process Image Segments ...5-3
5-4 Procedure Linkage Table Sample Entries..5-8
6-1 Unwind Table ...6-5
7-1 Thread-Local Storage Data Structure Layout ..7-11
iv Intel® Itanium™ Processor-specific Application Binary Interface (ABI)

Tables

3-1 Additional Fundamental Data Types ..3-1
3-2 Hardware Exceptions and Signals ...3-2
3-3 Floating-point Exceptions ...3-3
3-4 Standard Signal Delivery..3-4
3-5 Signal Delivery – Additional Details for Itanium™ Architecture..........................3-4
4-1 Operating System Identification, e_ident[EI_OSABI] ...4-2
4-2 Itanium™ Processor-specific Flags, e_flags ..4-2
4-3 Section Types, sh_type ..4-3
4-4 Section Attribute Flags, sh_flags..4-4
4-5 Special Sections...4-4
4-6 Relocation Offset Instruction Slot Encoding ...4-7
4-7 Itanium™ Architecture Relocation Types ...4-10
5-1 Program Header Types, p_type ...5-1
5-2 Program Header Flags, p_flags ...5-1
5-3 Example Runtime Address Calculation ..5-4
5-4 Dynamic Linker Location ..5-5
5-5 Dynamic Section Tag, d_tag ..5-5
5-6 Default Shared Object Location ...5-6
7-1 Section Table Entries for .tbss and .tdata ..7-9
7-2 Program Header Table Entry for Thread-Local Storage7-10
Intel® Itanium™ Processor-specific Application Binary Interface (ABI) v

vi Intel® Itanium™ Processor-specific Application Binary Interface (ABI)

Introduction 1

1.1 The Intel® Itanium™ Architecture and the System V
ABI

The System V Application Binary Interface defines a system interface for compiled application
programs. Its purpose is to establish a standard binary interface for application programs on
systems that implement the interfaces defined in the X/Open Common Application Environment
Specification, Issue 4.2 (also known as the “Single UNIX Specification”) and the System V
Interface Definition, Issue 4. This includes, but is not limited to, systems that have implemented
UNIX System V, Release 4.

This document is the result of consensus among operating system vendors intending to provide
UNIX and UNIX workalike operating systems on the Itanium™ architecture. The vendors
participating in this effort include Intel, Sun Microsystems, SCO, IBM, SGI, Cygnus Solutions, VA
Linux Systems, HP, and Compaq. This specification builds upon the definitions of the System V
ABI and supplies those aspects of the System V ABI which are indicated as being processor-
specific. In combination with the System V ABI and the documents included by reference by this
specification, constitutes a specification for compiler, linker and object model compatibility for
implementations of UNIX and UNIX workalike operating systems on systems that utilize the
processor architecture of Intel® Itanium™ architecture microprocessors.

1.2 How to Use the System V ABI for Intel® Itanium™
Processors

The Itanium architecture supports a 64 bit instruction set and also provides compatibility with the
IA-32 instruction set. Binaries using the Itanium architecture instruction set may program to either
a 32-bit model, in which the C data types int and long and all pointer types are 32-bit objects
(ILP32); or to a 64-bit model, in which the C int type is 32-bits but the C long type and all
pointer types are 64-bit objects (LP64). This specification describes information needed to
construct, link and execute binaries using the LP64 programming model. In addition, the Itanium
architecture allows both big-endian (most-significant byte first) and little-endian (least-significant
byte first) encoding. This specification may be used to instantiate a big-endian and/or a little-
endian ABI.

This specification does not fully describe the ILP32 programming model. Since some vendors will
support this model, some non-binding considerations will be covered in Chapter 7. The
specification also does not describe the compatibility mode for IA-32 instruction set binaries. That
mode is described by a separate ABI document.

This document is a supplement to the generic System V ABI and contains information referenced in
the generic specification that may differ when System V is implemented on different processors.
Therefore, the generic ABI is the prime reference document, and this supplement is provided to fill
gaps in that specification.

As with the System V ABI, this specification references other available documents, especially the
Intel® IA-64 Architecture Software Developer’s Manual, Itanium™ Software Conventions and
Runtime Architecture Guide, and 32-Bit Little-Endian IA-64 Software Conventions Addendum for
Intel® Itanium™ Processor-specific Application Binary Interface (ABI) 1-1

Introduction
IA-64 UNIX. All the information referenced by this supplement should be considered part of this
specification unless otherwise noted, and just as binding as the requirements and data explicitly
included here.

1.3 Evolution of the ABI Specification

This specification will evolve over time to address new technology and market requirements, and
will be reissued periodically. Each new edition of the specification is likely to contain extensions
and additions that will increase the potential capabilities of applications that are written to conform
to the ABI.

1.4 Additional Documents

The following documents available at developer.intel.com web site (http://developer.intel.com/
design/ia-64/devinfo.htm) are included by reference into this specification:

• Intel® IA-64 Architecture Software Developer's Manual, Vol. 1 Rev. 1.1: IA-64 Application
Architecture

• Intel ®IA-64 Architecture Software Developer's Manual, Vol. 2 Rev. 1.1: IA-64 System
Architecture

• Intel® IA-64 Architecture Software Developer's Manual, Vol. 3 Rev. 1.1: Instruction Set
Reference

• Intel® IA-64 Architecture Software Developer's Manual, Vol. 4 Rev. 1.1: Itanium™ Processor
Programmer's Guide

• Intel® IA-64 Architecture Software Developer's Manual Specification Update

• Itanium™ Software Conventions and Runtime Architecture Guide (Document Number
245358)

• IA-64 Assembly Language Reference Guide (Document Number 248801)
1-2 Intel® Itanium™ Processor-specific Application Binary Interface (ABI)

Software Installation 2

For future use.
Intel® Itanium™ Processor-specific Application Binary Interface (ABI) 2-1

Software Installation
2-2 Intel® Itanium™ Processor-specific Application Binary Interface (ABI)

Low-level System Information 3

3.1 Introduction

The System V ABI leaves processor-specific low-level system information to the Processor
Supplement (this document). The majority of this required information is documented in the
Itanium™ Software Conventions and Runtime Architecture Guide (“Conventions”), which is
operating system-independent. Only information that is specific to implementing the ABI on the
Itanium architecture will be described here.

Object files (relocatable files, executable files and shared object files) that are supplied as part of an
ABI-conforming application must use position-independent code as described in Chapter 12 of
Conventions.

3.2 Machine Interface

3.2.1 Fundamental Types

The following additional C language scalar data types are required. long long is an integral
type, while long double is a floating-point type.

Table 3-1. Additional Fundamental Data Types

Data Model C Type Size Align Hardware Representation

ILP32 long long
unsigned long long

8 4 Signed doubleword

Unsigned doubleword

LP64 long long
unsigned long long

8 8 Signed doubleword

Unsigned doubleword

ILP32 long double 12 4 IEEE Double-Extended floating point

LP64 long double 16 16 IEEE Double-Extended floating point

NOTE: long double in the LP64 model is allocated 16 bytes (128 bits) of storage but uses the 80-bit extended
double format internally.
Intel® Itanium™ Processor-specific Application Binary Interface (ABI) 3-1

Low-level System Information
3.3 Operating System Interface

3.3.1 Exception Interface

As the Itanium architecture manuals describe, the processor changes mode to handle exceptions.
Some exceptions can be explicitly generated by a process. This section specifies those exception
types with defined behavior. Table 3-2 shows the signal number (si_signo) and the code
(si_code) values that will be delivered for each type of hardware exception that has an effect on
program execution.

Figure 3-1. Double-extended (80-bit) Floating-point Formats

Floating-point Register Format (82-bit)

s0

s1

s2

s3

s4

s5

s6

s7

0

1

2

3

4

5

6

7

7 0

e0’

se1’

8

9

s3 s0s2 s1s7 s4s6 s5

63 0

se2 e1 e0

s3 s0s2 s1s7 s4s6 s5se1’ e0’

81
significandexp.s

Double-Extended (80-bit) Interpretation

se1’

e0’

s7

s6

s5

s4

s3

s2

0

1

2

3

4

5

6

7

7 0

s1

s0

8

9

Double-Extended (80-bit)

LE BE

Table 3-2. Hardware Exceptions and Signals

Type of Exception si_signo si_code Notes

TLB faults SIGSEGV SEGV_MAPERR a

Access faults SIGSEGV SEGV_ACCERR

Privilege violations SIGILL ILL_PRVOPC

Register NaT consumption SIGILL ILL_PRVREG

NaT page consumption SIGSEGV __ILL_REGNAT

Speculative operation None SEGV_MAPERR b

Unaligned data SIGBUS BUS_ADRALN c

Floating-point exceptions SIGFPE see Table 3-3

Illegal instructions SIGILL ILL_ILLOPC
3-2 Intel® Itanium™ Processor-specific Application Binary Interface (ABI)

Low-level System Information
Table 3-3 details the possible reasons for a SIGFPE signal caused by a floating-point exception:

3.3.2 Signal Delivery

The Single UNIX Specification defines information that is made available in the siginfo_t
structure for specific signals. That information is reproduced, for informational purposes, in
Table 3-4. Table 3-5 lists additional information delivered for specific signals on Itanium
architecture.

Break 0 (unknown error) SIGILL ILL_ILLOPC

Break 1 (integer divide by zero) SIGFPE FPE_INTDIV

Break 2 (integer overflow) SIGFPE FPE_INTOVF

Break 3 (range check/bounds check) SIGFPE FPE_FLTSUB

Break 4 (null pointer dereference) SIGSEGV SEGV_MAPERR

Break 5 (misaligned data) SIGBUS BUS_ADRALN

Break 6 (decimal overflow) SIGFPE __FPE_DECOVF

Break 7 (decimal divide by zero) SIGFPE __FPE_DECDIV

Break 8 (packed decimal error) SIGFPE __FPE_DECERR

Break 9 (invalid ASCII digit) SIGFPE __FPE_INVASC

Break 10 (invalid decimal digit) SIGFPE __FPE_INVDEC

Break 11 (paragraph stack overflow) SIGSEGV __SEGV_PSTKOVF

Break 12-0x03ffff (reserved) undefined

Break 0x040000-0x07ffff (application) SIGILL __ILL_BREAK

Break 0x080000-0x0fffff (debugger) SIGTRAP TRAP_BRKPT d

Break 0x100000-0x1fffff (reserved) undefined

a. TLB faults are first serviced by the system to determine if the attempted access was to a page to which the process has access.
A signal is delivered to the application only if the attempted access is determined to be invalid.

b. Speculative operation faults are the result of a speculative check or floating-point check flags operation. The system services
this fault, and emulates the instruction as a pc-relative branch when the fault is taken.

c. The system may emulate unaligned data references, possibly depending on flags set in the executable object file or on the ex-
ecutable’s setting of the PSR.ac bit. If it does, no signal is delivered. Applications that rely on such behavior are not ABI con-
forming.

d. If the process is being controlled by a debugger, these faults generate debugger events, and do not cause a signal to be deliv-
ered to the process.

Table 3-2. Hardware Exceptions and Signals (Continued)

Type of Exception si_signo si_code Notes

Table 3-3. Floating-point Exceptions

Code Reason

FPE_FLTDIV floating-point divide by zero

FPE_FLTOVF floating-point overflow

FPE_FLTUND floating-point underflow

FPE_FLTRES floating-point inexact result

FPE_FLTINV invalid floating-point operation

FPE_FLTSUB subscript out of range
Intel® Itanium™ Processor-specific Application Binary Interface (ABI) 3-3

Low-level System Information
When a signal handler is installed, the application passes a function pointer to the system. As
defined by Conventions, a function pointer points to a function descriptor, which contains the
handler’s entry point address and its global pointer register (gp) value. The implementation must
be aware of the structure of the function descriptor in order to deliver a signal correctly.

When delivering a signal, the implementation must do the following:

1. Build the signal info and signal context records at the top of the user stack. If SA_SIGINFO
was not set when installing the signal handler, these records are not required.

2. Create a new 16-byte scratch area at the top of the user stack, for the handler’s use.

3. Create a new register stack frame with three output argument registers, and place the signal
handler’s arguments in these registers.

4. Set the global pointer register (gp) to the handler’s gp value.

5. Initialize the floating-point status register (ar.fpsr) to the standard value, as defined by the
common runtime conventions.

6. Transfer control to the signal handler, providing the appearance that the handler has been
called, so that a return from the handler will reinstall the saved (and possibly modified)
context.

Table 3-4. Standard Signal Delivery

Signal Member Value

SIGILL
SIGFPE

void * si_addr
Address of faulting instruction

SIGSEGV
SIGBUS

void * si_addr
Address of faulting memory reference

SIGCHLD
pid_t si_pid
int si_status
uid_t si_uid

Child process ID

Exit value or signal

Real user ID of the process that sent the signal

SIGPOLL long si_band Band event for POLL_IN, POLL_OUT or POLL_MSG

Table 3-5. Signal Delivery – Additional Details for Itanium™ Architecture

Signal Member Value

SIGTRAP
void * si_addr
int si_imm

Address of faulting instruction

break instruction immediate operand

SIGILL int si_imm break instruction immediate operand (for __ILL_BREAK)
3-4 Intel® Itanium™ Processor-specific Application Binary Interface (ABI)

Low-level System Information
3.3.3 Signal Handler Interface

According to the Single UNIX Specification, if the SA_SIGINFO flag is used when a signal handler
is installed, the handler will be called with three arguments, according to the following prototype:

void handler(int signo, siginfo_t *info, void *context);

In addition to the several members required by Single UNIX Specification, the siginfo_t
structure contains the following fields for Itanium architecture:

The Single UNIX Specification defines the si_addr field as the address of the faulting instruction
or the faulting memory reference. When it is an instruction address, the value is represented as a
bundle address with the low-order two bits set to indicate the particular instruction within a bundle.

The Single UNIX Specification allows the application to cast the context argument to the type
ucontext_t, which contains the following fields (at least):

The stack_t structure contains the following fields (at least):

The stack described by this structure includes both the memory stack and the backing store.

The mcontext_t structure is an opaque structure. Its size must be specified by the ABI, but its
layout is implementation specific. Each implementation may provide an API for accessing and
modifying the context.

Note: REVIEW NOTE: Specification of the size is left to an external standards body.

3.3.3.1 Signal Delivery – Implementation Notes

Note: This section is informational and does not form part of the specification.

The si_imm field may be placed in the _fault member of the siginfo_t structure, since it
is delivered only for SIGTRAP signals, when si_addr is also delivered.

A signal handler’s return pointer must be some value that causes the saved signal context to be
reinstalled when the signal handler returns; thus, it can not be an address within the range of any of
the application’s loaded segments. Typically, it will be the address of a kernel entry point, mapped
into a shared portion of the application’s address space.

The signal context record placed on the stack marks a discontinuity in the stack. While the signal
handler’s frame itself is an ordinary stack frame, its caller appears to be a routine whose stack
frame is the context record. The system’s unwind routines will need a way of recognizing the
discontinuity. The common runtime conventions provide a special implementation-dependent

int si_imm Immediate operand for break instruction

stack_t uc_stack The stack used by this context.

mcontext_t uc_mcontext
A machine-specific representation of the saved
context.

void *ss_sp Stack base or pointer

size_t ss_size Size of the stack

int ss_flags Flags
Intel® Itanium™ Processor-specific Application Binary Interface (ABI) 3-5

Low-level System Information
unwind descriptor format (P10) for this purpose. A recommended, but not required, mechanism is
for the system to provide a special unwind table for the signal handler return point, using this
special unwind descriptor to indicate to the unwind library that it has reached a signal context
record on the stack. This unwind table is made available to the unwind library through an
implementation-specific mechanism.

Implementations will likely choose not to copy the stacked general registers into the signal context
record, relying instead on accessing the backing store as needed. Thus, the API routines for reading
and writing the context record will need to understand the layout of the backing store in order to
access and modify the stacked general registers.

If the backing store overflows as a result of flushing the register stack in preparation for signal
delivery, the system may need to provide space in the mcontext_t record for saving the
remainder of the register stack. Thus, there may be a discontinuity in the backing store, and API
routines for accessing the general registers must take this into account.

The API set should include read and write routines for each element of user-visible state, plus read
and write routines for the stacked general registers. The APIs should provide an abstraction layer to
help the programmer deal with the complexities of NaT bits, the layout of the backing store, the
frame marker, and the location of the instruction pointer within the current bundle.

3.3.4 Debugging Support

A program may use the break instruction subject to the restrictions documented in Chapter 2 of
Conventions. A break instruction with an immediate operand with the high-order two bits set to 01
is reserved for debugger breakpoints. For purposes of implementing the System V ABI, a value of
zero in the remaining bits (i.e. an operand of 0x80000) is defined as the debugger breakpoint; all
other values in this range are undefined.

3.3.5 Process Startup

This section describes the initial program state that the exec functions create when constructing a
new process image. Programming language systems use this initial program state to establish a
standard environment for their application programs. As an example, a C program begins
executing at a function named main, conventionally declared in the following way.

extern int main(int argc, char *argv[]);

Briefly, argc is a non-negative argument count and argv is an array of argument strings, with
argv[argc]=0;.

Although this section does not describe C program initialization, it gives the information necessary
to implement the call to main or to the entry point for a program in any other language.

The implementation will call (or appear to call) the program entry point recorded in the e_entry
field of the ELF header, hereafter referred to as "main”, according to standard calling conventions.
The system is responsible for initializing the process state to satisfy the common runtime
conventions (see Conventions). These initializations include, but are not limited to, the following:

1. The current frame marker must be configured for zero input and local registers, and at least
four output registers.

2. The stack pointer register (sp) must be aligned to a 16-byte boundary. An initial stack frame
must exist for the routine in the implementation responsible for calling main, with space for a
16-byte scratch area for use by main.
3-6 Intel® Itanium™ Processor-specific Application Binary Interface (ABI)

Low-level System Information
3. The RSE backing store pointer registers must be valid.

4. The return pointer register (rp) is a valid return address, such that if the program returns from
the main routine, the implementation will cause the program to exit normally, using the main’s
return value as the exit status.

5. The unwind information for this "bottom-of-stack" routine in the implementation must provide
a mechanism for recognizing the bottom of the stack during a stack unwind.

6. The global pointer register (gp) contains main’s global pointer.

7. The floating-point status register (ar.fpsr) is initialized as described in Conventions.

The first two argument registers (r32-r33, named out0-out1 at entry to main) must contain
argc and argv, respectively. The third and fourth argument registers (r34-r35, out2-out3)
must be allocated as required by the common runtime conventions, but are not defined by this ABI.
Intel® Itanium™ Processor-specific Application Binary Interface (ABI) 3-7

Low-level System Information
3-8 Intel® Itanium™ Processor-specific Application Binary Interface (ABI)

Object Files 4

4.1 ELF Header

4.1.1 Machine Information

4.1.1.1 Programming Model

As described in Section 1.1, “The Intel® Itanium™ Architecture and the System V ABI” on
page 1-1, binaries using the Itanium architecture instruction set may program to either a 32-bit
model, in which the C data types int and long and all pointer types are 32-bit objects (ILP32); or
to a 64-bit model, in which the C int type is 32-bits but the C long type and all pointer types are
64-bit objects (LP64). This specification describes both binaries that use the ILP32 and the LP64
model. For LP64 binaries, the e_flags member of the ELF header will include the value
EF_IA_64_ABI64 (see Table 4-2 below). For ILP32 binaries e_flags will not include
EF_IA_64_ABI64. Itanium architecture files using the 32-bit programming model may not be
combined with Itanium architecture files using the 64-bit programming model.

4.1.1.2 File Class

For Itanium architecture ILP32 relocatable (i.e. of type ET_REL) objects, the file class value in
e_ident[EI_CLASS] must be ELFCLASS32. For LP64 relocatable objects, the file class value
may be either ELFCLASS32 or ELFCLASS64, and a conforming linker must be able to process
either or both classes. ET_EXEC or ET_DYN object file types must use ELFCLASS32 for ILP32
and ELFCLASS64 for LP64 programs.

Addresses appearing in ELFCLASS32 relocatable objects for LP64 programs are implicitly
extended to 64 bits by zero-extending.

Note: Some constructs legal in LP64 programs, e.g. absolute 64-bit addresses outside the 32-bit range,
may require use of an ELFCLASS64 relocatable object file.

4.1.1.3 Data Encoding

For the data encoding in e_ident[EI_DATA], Itanium architecture 64-bit objects can use either
ELFDATA2MSB or ELFDATA2LSB. That is, Itanium architecture 64-bit ELF files may use either
the big endian or little endian data encoding. Itanium architecture files using ELFDATA2MSB
encoding may not be combined with Itanium architecture files using ELFDATA2LSB encoding.

4.1.1.4 Operating System Identification

The e_ident[EI_OSABI] value identifies the operating system and ABI to which the object is
targeted, as listed in Table 4-1.
Intel® Itanium™ Processor-specific Application Binary Interface (ABI) 4-1

Object Files
4.1.1.5 Processor Identification

Processor identification resides in the ELF header’s e_machine member and must have the value
EM_IA_64.

4.1.1.6 Processor-specific Flags

The ELF header e_flags member holds bit flags associated with the file, as listed in Table 4-2.

EF_IA_64_MASKOS All bits in this mask are reserved for operating system specific values.

EF_IA_64_ABI64 If this bit is set, the object uses the LP64 programming model, as
described above. If the bit is clear, the object uses the ILP32
programming model.

Table 4-1. Operating System Identification, e_ident[EI_OSABI]

Name Value Meaning

ELFOSABI_NONE 0 Reserved

ELFOSABI_HPUX 1 HP-UX

ELFOSABI_NETBSD 2 NetBSD

ELFOSABI_LINUX 3 Linux

“Unspecified” 4 [IA-32 GNU Mach/Hurd]

“Unspecified” 5 [86 Open common IA-32 ABI]

ELFOSABI_SOLARIS 6 Solaris

ELFOSABI_MONTEREY 7 AIX

ELFOSABI_IRIX 8 IRIX

ELFOSABI_FREEBSD 9 FreeBSD

ELFOSABI_TRU64 10 Compaq TRU64 UNIX

ELFOSABI_MODESTO 11 Novell Modesto

ELFOSABI_OPENBSD 12 Open BSD

Table 4-2. Itanium™ Processor-specific Flags, e_flags

Name Value

EF_IA_64_MASKOS 0x00ff000f

EF_IA_64_ABI64 0x00000010

EF_IA_64_REDUCEDFP 0x00000020

EF_IA_64_CONS_GP 0x00000040

EF_IA_64_NOFUNCDESC_CONS_GP 0x00000080

EF_IA_64_ABSOLUTE 0x00000100

EF_IA_64_ARCH 0xff000000
4-2 Intel® Itanium™ Processor-specific Application Binary Interface (ABI)

Object Files
EF_IA_64_REDUCEDFP
If this bit is set, the object has been compiled with a reduced floating-
point model. The compiler uses only floating point registers f6-f11 for
integer arithmetic. If the program does not perform explicit floating-
point calculations, registers f6-f11 are the only floating-point registers
that need to be saved by interrupt handlers. When combining relocatable
objects, a linker should set the EF_IA_64_REDUCEDFP flag in the
resulting object only if all of the objects to be combined have the flag set.

EF_IA_64_CONS_GP If this bit is set, the global pointer (gp) is treated as a program-wide
constant. The gp is saved and restored only for indirect function calls.
Objects with this bit set may not be combined with objects that do not
have this bit set. This model is intended for use primarily in standalone
programs, such as operating system kernels. Objects with this bit set are
not ABI-conforming.

EF_IA_64_NOFUNCDESC_CONS_GP
If this bit is set, the global pointer (gp) is treated as a program-wide
constant. The gp is never saved or restored across function calls. In this
model, a function’s address is not treated as the address of a two-word
function descriptor. Rather, it is the actual address of the function
definition itself. This model is intended for use primarily in standalone
programs, such as operating system kernels. Objects with this bit set are
not ABI-conforming.

EF_IA_64_ABSOLUTE If this bit is set, the program loader is instructed to load the executable at
the addresses specified in the program headers. Objects with this bit set
are not ABI-conforming.

EF_IA_64_ARCH The integer value formed by these eight bits identifies the architecture
version. This field is reserved for use when the Itanium architecture is
extended with backward-compatible features. It records the minimum
level of the architecture required by the object code. The only currently
defined value is one.

4.2 Sections

4.2.1 Section Types

The Itanium architecture defines two processor-specific section types and a reserved range to be
used in the sh_type member of the ELF section header in addition to the standard section types.

Table 4-3. Section Types, sh_type

Name Value

SHT_IA_64_EXT 0x70000000

SHT_IA_64_UNWIND 0x70000001

SHT_IA_64_LOPSREG 0x78000000

SHT_IA_64_HIPSREG 0x7fffffff

SHT_IA_64_PRIORITY_INIT 0x79000000
Intel® Itanium™ Processor-specific Application Binary Interface (ABI) 4-3

Object Files
SHT_IA_64_EXT The section contains product specific extension bits. These consist of at
least one 64-bit word of attribute flags that identify specific non-
architectural extensions that are required by the object code. See
Section 4.2.4, “Architecture Extensions” on page 4-6.

SHT_IA_64_UNWIND The section contains unwind function table entries for stack unwinding.
See Conventions for details.

SHT_IA_64_LOPSREG to SHT_IA_64_HIPSREG
Sections in this range are reserved for implementation-specific section
types. A portion of this range is allocated for use by implementations
which have assigned Operating System Identification values (see
Section 4.1.1.4, “Operating System Identification” on page 4-1). If the
high-order 8 bits of sh_type contain 0x78 then the next 8 bits contain
the EI_OSABI value. For example, if the EI_OSABI value for an
implementation is 0x03, the reserved range for that implementation is
0x78030000 to 0x7803ffff.

SHT_IA_64_PRIORITY_INIT The section contains priority initialization records, each of which
is a pair consisting of an Elfxx_Word priority and an Elfxx_Addr
function address.

 An implementation is not required to support this section type, beyond
the gABI requirements for the handling of unrecognized section types
(i.e. linking them into a contiguous section in the object file created by
the static linker).

4.2.2 Section Attribute Flags

A section header sh_flags member holds 1-bit flags that describe the attributes of the section.
The Itanium architecture defines two processor-specific values in addition to the standard values.

SHF_IA_64_SHORT The section contains objects that will be referenced using an offset from
the global pointer (gp), so the section must be placed near gp.

SHF_IA_64_NORECOV The section contains code that uses speculative instructions without
recovery code. ABI-conforming implementations are not required to
execute binaries that do not have recovery code associated with them.

4.2.3 Special Sections

The following special sections are defined for use on the Itanium architecture.

Table 4-4. Section Attribute Flags, sh_flags

Name Value

SHF_IA_64_SHORT 0x10000000

SHF_IA_64_NORECOV 0x20000000

Table 4-5. Special Sections

Name Type Attributes

.IA_64.archext SHT_IA_64_EXT None

.IA_64.pltoff SHT_PROGBITS SHF_ALLOC+SHF_WRITE+SHF_IA_64_SHORT
4-4 Intel® Itanium™ Processor-specific Application Binary Interface (ABI)

Object Files
.IA_64.archext This section holds product-specific extension bits (see
SHT_IA_64_EXT in Section 4.2.1, “Section Types” on page 4-3 for
details). The link editor will perform a logical “or” of the extension bits
of each object it combines when creating an executable so that it creates
only a single .IA_64.archext section in the executable.

.IA_64.pltoff This section holds local function descriptor entries. See “Coding
Examples” in Conventions and Section 5.3.6, “Procedure Linkage
Table” on page 5-7 for more information.

.IA_64.unwind This section holds the unwind function table. The contents are described
in Conventions.

.IA_64.unwind_info This section holds stack unwind and exception handling information.
The contents specific to unwind information are described in
Conventions. The exception handling information is programming
language specific and is unspecified.

.got This section holds the global offset table. See “Coding Examples” in
Conventions and Section 5.3.4, “Global Offset Table” on page 5-6 for
more information.

.plt This section holds the procedure linkage table. See Section 5.3.6,
“Procedure Linkage Table” on page 5-7 for more information.

.sbss This section holds uninitialized data that contribute to the program's
memory image. Data objects contained in this section are recommended
to be eight bytes or less in size. The system initializes the data with
zeroes when the program begins to run. The section occupies no file
space, as indicated by the section type SHT_NOBITS. The .sbss
section is placed so it may be accessed using short direct addressing (22-
bit offset from gp). See “Protection Areas” in Conventions.

.sdata and .sdata1 These sections hold initialized data that contribute to the program's
memory image. Data objects contained in these sections are
recommended to be eight bytes or less in size. The .sdata and
.sdata1 sections are placed so they may be accessed using short direct
addressing (22-bit offset from gp). See “Protection Areas” in
Conventions.

.IA_64.unwind SHT_IA_64_UNWIND SHF_ALLOC+SHF_LINK_ORDER

.IA_64.unwind_info SHT_PROGBITS SHF_ALLOC

.got SHT_PROGBITS SHF_ALLOC+SHF_WRITE+SHF_IA_64_SHORT

.plt SHT_PROGBITS SHF_ALLOC+SHF_EXECINSTR

.sbss SHT_NOBITS SHF_ALLOC+SHF_WRITE+SHF_IA_64_SHORT

.sdata SHT_PROGBITS SHF_ALLOC+SHF_WRITE+SHF_IA_64_SHORT

.sdata1 SHT_PROGBITS SHF_ALLOC+SHF_WRITE+SHF_IA_64_SHORT

Table 4-5. Special Sections (Continued)

Name Type Attributes
Intel® Itanium™ Processor-specific Application Binary Interface (ABI) 4-5

Object Files
4.2.4 Architecture Extensions

The .IA_64.archext section allows a compiler to record dependencies on certain features and
capabilities of a specific processor, that are extensions to the Itanium architecture. Currently, there
are no such extensions defined, and this section is not expected to be used by the compilers.
Nevertheless, linkers and loaders should provide the proper implementation of this section in
preparation for future architectural extensions.

The contents of the .IA_64.archext section, if present, is interpreted as a series of individual
bits grouped into 64-bit doublewords. The first doubleword of the group is defined to correspond
bitwise to the bits in CPUID Register 4 (General Features/Capability Bits). Additional
doublewords in the section have no defined meaning, unless and until the Itanium architecture is
extended with additional CPUID Registers defining additional capability bits.

All .IA_64.archext sections must be of section type SHT_IA_64_EXT, and should have no
flags set in the sh_flags field. Each section must be a multiple of 8 bytes in length, with 8 byte
alignment. The linker must combine such sections by a bitwise OR operation on each
corresponding doubleword of each section (i.e., the first doubleword of one section OR’ed with the
first doubleword of the other section, and so on). If some sections are shorter than others, the
shorter ones are padded with zeroes at the end, so that the combined output section is equal in
length to the largest input section.

If a .IA_64.archext section exists in the output file, the linker must create a program header
table entry of type PT_IA_64_ARCHEXT to communicate this information to the loader. This
program header table entry must precede all entries of type PT_LOAD. If the .IA_64.archext
section exists, but its contents are all zeroes, the linker may omit the section and program header
table entry, but it is not required to.

When an executable or shared library is loaded, and a PT_IA_64_ARCHEXT entry is present in
the program header table, the loader should compare the contents of the first doubleword of the
section with CPUID Register 4. If any bits are set in the section that are not also set in CPUID
Register 4, the implementation must refuse to load the file. If, in the future, additional CPUID
registers are defined to identify further capability bits, the loader should check additional double-
words of this section with those registers as well. If the section contains excess doublewords that
do not correspond to defined CPUID registers, the loader should check that all excess bits are zero.

The linker should be prepared to deal with .IA_64.archext sections of arbitrary length, but it
is permissible to truncate the sections to a reasonable length. It is recommended that all tools
should be prepared to deal with at least four doublewords in this section.

4.3 Relocations

4.3.1 Relocation Types

A relocation entry’s r_offset value designates the offset or virtual address of the affected
storage unit. For data relocations, this is the first byte of the word or doubleword being relocated.
For instructions, it is the address of the bundle containing the instruction being relocated. The least
significant two bits of the offset identify the instruction slot to which the relocation applies, as
described below. Each instruction bundle is 16 bytes long and 16 byte aligned; each instruction slot
is 41 bits long. Whether a given relocation type applies to an instruction or data field is noted in the
Field column of the table of relocations, below.
4-6 Intel® Itanium™ Processor-specific Application Binary Interface (ABI)

Object Files
Relocation entries describe how to alter the following instruction and data fields (bit numbers
appear to the upper left of the field they label; all fields are numbered from bit 0).

word32 A 32-bit field occupying four bytes with arbitrary alignment. The byte
order for these values is specified by the relocation type.

word64 A 64-bit field occupying eight bytes with arbitrary alignment. The byte
order for these values is specified by the relocation type.

function descriptor Two contiguous 64-bit words occupying 16 bytes with 8-byte alignment.
The byte order for the function descriptor is specified by the relocation
type. Function descriptor entries are created by the linker and/or the
dynamic linker and are used in resolving function addresses. The first
64-bit word contains the function address. The second 64-bit word
contains the value of the global pointer (gp) for the object containing the
definition of the function. Function descriptor entries are referenced by
relocations contained in shared objects and executable objects only and
are intended to be processed at run-time.

instruction - immediate14 A signed 14-bit immediate value. imm7b contains bits 0 through 6 (low-
order bits). imm6d contains bits 7 through 12. s contains the high-order
bit (sign bit).

instruction - immediate22 A signed 22-bit immediate value. imm7b contains bits 0 through 6 (low-
order bits). imm9d contains bits 7 through 15. imm5c contains bits 16
through 20. s contains the high-order bit (sign bit).

instruction - immediate21 - form 1
A signed 21-bit immediate value. This value is formed by taking a 25-bit
displacement and shifting it right by four bits. For the resulting value,
imm20b contains bits 0 through 19 (low-order bits). s contains the high-
order bit (sign bit).

instruction - immediate21 - form 2
A signed 21-bit immediate value. This value is formed by taking a 25-bit
displacement and shifting it right by four bits. For the resulting value,
imm7a contains bits 0 through 6 (low-order bits). imm13c contains bits 7
through 19. s contains the high-order bit (sign bit).

Figure 4-1. Instruction Bundle Layout

000947

Table 4-6. Relocation Offset Instruction Slot Encoding

Encoding (last two bits) Instruction slot

00 Slot 0

01 Slot 1

10 Slot 2

11 Invalid

slot 2 slot 1 slot 0

127 86 45 4

template

087 46 5

5414141
Intel® Itanium™ Processor-specific Application Binary Interface (ABI) 4-7

Object Files
Figure 4-2. Relocatable Fields

000948a

31 0

word32

word32

word64

63 0
word64

word64

word64

63 0
function descriptor

40 036 35 32 26 19 12

s imm6d imm7b

instruction - immediate14

40 036 35 32 26 19 12

s imm9d imm7bimm5c

21
instruction - immediate22

40 036 35 32 12

s imm20b

instruction - immediate21: form 1

40 036 35 32 12

s imm13c

19 5

imm7a

instruction - immediate21: form 2

40 036 35

i

5

imm20a

25
instruction - immediate21: form 3

40 0

imm41

40 036 35 32 12

i imm9d

1926 21 20

icimm5c imm7b

instruction - immediate64

instruction - immediate60

im m 2 0bi

imm39

40 012

40 37 36 35 34 33 32 13 12 11 9 8 6 5 0

4 1 1 2 20 1 3 3 6
4-8 Intel® Itanium™ Processor-specific Application Binary Interface (ABI)

Object Files
instruction - immediate21 - form 3
A signed 21-bit immediate value. This value is formed by taking a 25-bit
displacement and shifting it right by four bits. For the resulting value,
imm20a contains bits 0 through 19 (low order bits). i contains the high-
order bit (sign bit).

instruction - immediate64 A 64-bit immediate value. The value is contained within two 41-bit
instruction slots (slots 1 and 2 of a bundle). imm7b contains bits 0
through 6 (low order bits). imm9d contains bits 7 through 15. imm5c
contains bits 16 through 20. ic contains bit 21. imm41 contains bits 22
through 62 and takes the entire width of slot 1 (the second instruction
slot). i contains bit 63.

instruction - immediate60 A 60-bit immediate value which is left shifted 4 bits to form 64-bit value
for long branch or call. The value is contained within two 41-bit
instruction slots (slots 1 and 2 of a bundle). imm20b contains bits 0
through 19 (low order bits). imm39 contains bits 20 through 58. i
contains bit 59.

The calculations below assume one of two contexts:

1. The relocations may be contained within a relocatable file; the actions are transforming the
relocatable file into an executable or a shared object file. Conceptually, the link editor merges
one or more relocatable files to form the output. It first decides how to locate and combine the
input files, then updates the symbol values, and finally performs the relocation. Because many
Itanium architecture instructions have small immediate fields, the longer form of relocation
entry containing an explicit addend (Elf32_Rela or Elf64_Rela) is always used for
relocatable objects on Itanium architecture.

2. The relocations may be contained within an executable file or shared object; the actions
complete the job of relocation by fixing addresses for position-independent code. Relocations
contained within executable files or shared objects may use either the shorter form
(Elf32_Rel or Elf64_Rel) or the longer form (Elf32_Rela or Elf64_Rela). These
relocations always apply to word or doubleword data objects. The relocation dealt with at run-
time would be aligned.

Descriptions below use the following notation:

A The Addend used to compute the value of the relocatable field.

BD The Base address Difference, a constant that must be applied to a virtual
address. This constant represents the difference between the run-time
virtual address and the link-time virtual address of a particular segment.
The segment is implied by the value of the link-time virtual address. See
Section 5.2, “Program Loading” on page 5-1 for details.

P The “Place” (section offset or address) of the storage unit being relocated
(computed using r_offset). If the relocation applies to an instruction,
this is the address of the bundle containing the instruction.

S The value of the Symbol whose index resides in the relocation entry.

@gprel(expr) Computes a gp-relative displacement - the difference between expr and
the value of the global pointer (gp) for the current module.

@ltoff(expr) Requests the creation of a global offset table (GOT) entry that will hold
the full value of expr and computes the gp-relative displacement to that
GOT entry. See Section 5.3.4, “Global Offset Table” on page 5-6 for
more information.
Intel® Itanium™ Processor-specific Application Binary Interface (ABI) 4-9

Object Files
@pltoff(symbol) Requests the creation of a local function descriptor entry for the given
symbol and computes the gp-relative displacement to that function
descriptor entry. See Section 5.3.6, “Procedure Linkage Table” on
page 5-7 for more information.

@segrel(expr) Computes a segment-relative displacement - the difference between expr
and the address of the beginning of the segment containing the
relocatable object. This relocation type is designed for data structures
that reside in read-only segments, but need to contain pointers. The
relocatable object and effective address must be contained within the
same segment. Applications using these pointers must be aware that they
are segment-relative and must adjust their values at run-time, using the
load address of the containing segment. No output relocations will be
generated for @segrel relocations.

@secrel(expr) Computes a section-relative displacement - the difference between expr
and the address of the beginning of the (output) section that contains
expr. This relocation type is designed for references from one non-
allocatable section to another. Applications using these values must be
aware that they are section-relative and must adjust their values at run-
time, using the adjusted address of the target section. No output
relocations will be generated for @secrel relocations.

@fptr(symbol) Evaluates to the address of the “official” function descriptor for the given
symbol. See Conventions for more information.

@tprel(expr) Computes a tp-relative displacement -- the difference between the
effective address and the value of the thread pointer. The expression
must evaluate to an effective address within a thread-specific data
segment.

@dtpmod(expr) Computes the load module index corresponding to the load module that
contains the definition of the symbol referenced by the relocation. When
used in conjunction with the @ltoff() operator, it evaluates to the gp-
relative offset of a linkage table entry that holds the computed load
module index.

@dtprel(expr) Computes a dtv-relative displacement -- the difference between the
effective address and the base address of the thread-local storage block
that contains the definition of the symbol referenced by the relocation.
When used in conjunction with the @ltoff() operator, it evaluates to the
gp-relative offset of a linkage table entry that holds the computed
displacement.

The MSB and LSB suffixes on the following relocation types indicate whether the target field is
stored most significant byte first (big-endian) or least significant byte first (little-endian),
respectively.

Table 4-7. Itanium™ Architecture Relocation Types

Name Value Field Calculation

R_IA_64_NONE 0 None None

R_IA_64_IMM14 0x21 instruction - immediate14 S + A

R_IA_64_IMM22 0x22 instruction - immediate22 S + A

R_IA_64_IMM64 0x23 instruction - immediate64 S + A

R_IA_64_DIR32MSB 0x24 word32 MSB S + A
4-10 Intel® Itanium™ Processor-specific Application Binary Interface (ABI)

Object Files
R_IA_64_DIR32LSB 0x25 word32 LSB S + A

R_IA_64_DIR64MSB 0x26 word64 MSB S + A

R_IA_64_DIR64LSB 0x27 word64 LSB S + A

R_IA_64_GPREL22 0x2a instruction - immediate22 @gprel(S + A)

R_IA_64_GPREL64I 0x2b instruction - immediate64 @gprel(S + A)

R_IA_64_GPREL32MSB 0x2c word32 MSB @gprel(S + A)

R_IA_64_GPREL32LSB 0x2d word32 LSB @gprel(S + A)

R_IA_64_GPREL64MSB 0x2e word64 MSB @gprel(S + A)

R_IA_64_GPREL64LSB 0x2f word64 LSB @gprel(S + A)

R_IA_64_LTOFF22 0x32 instruction - immediate22 @ltoff(S + A)

R_IA_64_LTOFF64I 0x33 instruction - immediate64 @ltoff(S + A)

R_IA_64_PLTOFF22 0x3a instruction - immediate22 @pltoff(S + A)

R_IA_64_PLTOFF64I 0x3b instruction - immediate64 @pltoff(S + A)

R_IA_64_PLTOFF64MSB 0x3e word64 MSB @pltoff(S + A)

R_IA_64_PLTOFF64LSB 0x3f word64 LSB @pltoff(S + A)

R_IA_64_FPTR64I 0x43 instruction - immediate64 @fptr(S + A)

R_IA_64_FPTR32MSB 0x44 word32 MSB @fptr(S + A)

R_IA_64_FPTR32LSB 0x45 word32 LSB @fptr(S + A)

R_IA_64_FPTR64MSB 0x46 word64 MSB @fptr(S + A)

R_IA_64_FPTR64LSB 0x47 word64 LSB @fptr(S + A)

R_IA_64_PCREL60B 0x48 instruction - immediate60 S + A – P

R_IA_64_PCREL21B 0x49 instruction - immediate21 form 1 S + A – P

R_IA_64_PCREL21M 0x4a instruction - immediate21 form 2 S + A - P

R_IA_64_PCREL21F 0x4b instruction - immediate21 form 3 S + A – P

R_IA_64_PCREL32MSB 0x4c word32 MSB S + A – P

R_IA_64_PCREL32LSB 0x4d word32 LSB S + A – P

R_IA_64_PCREL64MSB 0x4e word64 MSB S + A – P

R_IA_64_PCREL64LSB 0x4f word64 LSB S + A – P

R_IA_64_LTOFF_FPTR22 0x52 instruction - immediate22 @ltoff(@fptr(S + A))

R_IA_64_LTOFF_FPTR64I 0x53 instruction - immediate64 @ltoff(@fptr(S + A))

R_IA_64_LTOFF_FPTR32MSB 0x54 word32 MSB @ltoff(@ftpr(S + A))

R_IA_64_LTOFF_FPTR32LSB 0x55 word32 LSB @ltoff(@fptr(S + A))

R_IA_64_LTOFF_FPTR64MSB 0x56 word64 MSB @ltoff(@fptr(S + A))

R_IA_64_LTOFF_FPTR64LSB 0x57 word64 LSB @ltoff(@fptr(S + A))

R_IA_64_SEGREL32MSB 0x5c word32 MSB @segrel(S + A)

R_IA_64_SEGREL32LSB 0x5d word32 LSB @segrel(S + A)

R_IA_64_SEGREL64MSB 0x5e word64 MSB @segrel(S + A)

R_IA_64_SEGREL64LSB 0x5f word64 LSB @segrel(S + A)

R_IA_64_SECREL32MSB 0x64 word32 MSB @secrel(S + A)

Table 4-7. Itanium™ Architecture Relocation Types (Continued)

Name Value Field Calculation
Intel® Itanium™ Processor-specific Application Binary Interface (ABI) 4-11

Object Files
R_IA_64_SECREL32LSB 0x65 word32 LSB @secrel(S + A)

R_IA_64_SECREL64MSB 0x66 word64 MSB @secrel(S + A)

R_IA_64_SECREL64LSB 0x67 word64 LSB @secrel(S + A)

R_IA_64_REL32MSB 0x6c word32 MSB BD + A

R_IA_64_REL32LSB 0x6d word32 LSB BD + A

R_IA_64_REL64MSB 0x6e word64 MSB BD + A

R_IA_64_REL64LSB 0x6f word64 LSB BD + A

R_IA_64_LTV32MSB 0x74 word32 MSB S + A (see below)

R_IA_64_LTV32LSB 0x75 word32 LSB S + A (see below)

R_IA_64_LTV64MSB 0x76 word64 MSB S + A (see below)

R_IA_64_LTV64LSB 0x77 word64 LSB S + A (see below)

R_IA_64_PCREL21BIa 0x79 instruction - immediate21 form 1 S + A - P

R_IA_64_PCREL22 0x7A instruction - immediate22 S + A - P

R_IA_64_PCREL64I 0x7B instruction - imm64 S + A - P

R_IA_64_IPLTMSB 0x80 function descriptor MSB see below

R_IA_64_IPLTLSB 0x81 function descriptor LSB see below

R_IA_64_SUB 0x85 Instruction - imm64 A – S

R_IA_64_LTOFF22X 0x86 instruction - immediate22 see below

R_IA_64_LDXMOV 0x87 instruction - immediate22 see below

R_IA_64_TPREL14 0x91 instruction - immediate14 @tprel(S+A)

R_IA_64_TPREL22 0x92 instruction - immediate22 @tprel(S+A)

R_IA_64_TPREL64I 0x93 instruction - immediate64 @tprel(S+A)

R_IA_64_TPREL64MSB 0x96 word64 MSB @tprel(S+A)

R_IA_64_TPREL64LSB 0x97 word64 LSB @tprel(S+A)

R_IA_64_LTOFF_TPREL22 0x9A instruction - immediate22 @ltoff(@tprel(S+A))

R_IA_64_DTPMOD64MSB 0xA6 word64 MSB @dtpmod(S+A)

R_IA_64_DTPMOD64LSB 0xA7 word64 LSB @dtpmod(S+A)

R_IA_64_LTOFF_DTPMOD22 0xAA instruction - immediate22 @ltoff(@dtpmod(S+A))

R_IA_64_DTPREL14 0xB1 instruction - immediate14 @dtprel(S+A)

R_IA_64_DTPREL22 0xB2 instruction - immediate22 @dtprel(S+A)

R_IA_64_DTPREL64I 0xB3 instruction - immediate64 @dtprel(S+A)

R_IA_64_DTPREL32MSB 0xB4 word632 MSB @dtprel(S+A)

R_IA_64_DTPREL32LSB 0xB5 word32 LSB @dtprel(S+A)

R_IA_64_DTPREL64MSB 0xB6 word64 MSB @dtprel(S+A)

R_IA_64_DTPREL64LSB 0xB7 word64 LSB @dtprel(S+A)

R_IA_64_LTOFF_DTPREL22 0xBA instruction - immediate22 @ltoff(@dtprel(S+A))

a. The PCREL21BI relocation works just like PCREL21B, but it marks a call for which gp has not been saved, thus
requiring that the target reside within the same load module as the call. It is needed it for the cases where we choose to
bind a symbol locally, optimizing the call sequence, but where we don't want to, or can't, mark the symbol “protected”
or “hidden.”

Table 4-7. Itanium™ Architecture Relocation Types (Continued)

Name Value Field Calculation
4-12 Intel® Itanium™ Processor-specific Application Binary Interface (ABI)

Object Files
Note: Relocation information not used at run-time may be unaligned. It is expected that linkers will have
to deal with them. Relocations dealt at run-time will always be aligned.

Note: Values above 0xe0 are available for use in implementation-defined ways. All other values are
reserved for future use.

The relocation type values have been chosen so that the expression type can be easily extracted by
masking off the lower three or four bits, and the data/instruction format can be determined in most
cases by looking only at the low-order four bits.

R_IA_64_LTV32MSB, R_IA_64_LTV32LSB, R_IA_64_LTV32MSB and R_IA_64_LTV32LSB
These relocations appear only in relocatable objects. They behave
identically to the R_IA_64_DIR* family of relocations, with one
exception: while it is expected that the addresses created will need
further relocation at run-time, the linker should not create a
corresponding relocation in the output executable or shared object file.
The run-time consumer of the information provided is expected to
relocate these values.

R_IA_64_IPLTMSB and R_IA_64_IPLTLSB
These relocations are used only by the dynamic linker. Object files may
contain these relocations. Static linkers should pass these along for the
dynamic linker. When used with the shorter form of relocation entry
(Elf32_Rel or Elf64_Rel), they instruct the dynamic linker to
initialize the corresponding function descriptor entry with the address of
the referenced function and the value of the global pointer (gp) for the
object containing the function’s definition. When used with the longer
form of relocation entry containing an explicit addend (Elf32_Rela
or Elf64_Rela), the addend is additionally added to the address of the
referenced function. See Section 5.3.6, “Procedure Linkage Table” on
page 5-7 for more information.

R_IA_64_LTOFF22X and R_IA_64_LDXMOV
These relocations are used to support link-time rewriting of the indirect
addressing code sequences. The R_IA_64_LTOFF22X relocation is
used on the addl instruction that computes the address of a linkage table
entry in place of the normal R_IA_64_LTOFF22 relocation. It has
exactly the same semantics as R_IA_64_LTOFF22 unless the linker
determined that the symbol could be addressed directly, in which case
the linker transforms this into an R_IA_64_GPREL22 relocation. An
ABI-conforming implementation must recognize this relocation, but
may choose to treat it as a synonym for R_IA_64_LTOFF22. The
R_IA_64_LDXMOV relocation is used on an ld8 instruction, where no
relocation would ordinarily be seen. The ld8 instruction normally
extracts the address of the referenced object from the linkage table by
dereferencing the address computed by the addl. Its symbol and addend
fields must match exactly those of a corresponding R_IA_LTOFF22X
relocation. If the linker determines that the symbol can be addressed
directly, it rewrites the ld8 as a mov. This can be done by masking out
all but the qp, r1, and r3 fields of the instruction, then or'ing in the bit
pattern 0x8000000000. If an ABI-conforming implementation is
choosing to treat R_IA_64_LTOFF22X as a synonym for
R_IA_64_LTOFF22, this relocation is ignored.
Intel® Itanium™ Processor-specific Application Binary Interface (ABI) 4-13

Object Files
4-14 Intel® Itanium™ Processor-specific Application Binary Interface (ABI)

Program Loading and
Dynamic Linking 5

5.1 Program Header

The Itanium architecture defines two processor-specific values to be used in the p_type member
of the program header.

PT_IA_64_ARCHEXT The segment contains a section of type SHT_IA_64_EXT as described
in Section 4.2, “Sections” on page 4-3. If this entry is present, it must
precede all entries of type PT_LOAD.

PT_IA_64_UNWIND The segment contains the stack unwind tables. See Conventions and
Section 4.2, “Sections” on page 4-3 for details.

The Itanium architecture defines one processor-specific value to be used in the p_flags member
of the program header.

PF_IA_64_NORECOV If this bit is set, the segment contains code that uses speculative
instructions without recovery code. Executbles with this flag bit set are
not ABI conforming.

5.2 Program Loading

As the system creates or augments a process image, it logically copies a file's segment to a virtual
memory segment. When–and if–the system physically reads the file depends on the program's
execution behavior, system load, and so on. A process does not require a physical page unless it
references the logical page during execution, and processes commonly leave many pages un-
referenced. Therefore delaying physical reads frequently obviates them, improving system
performance. To obtain this efficiency in practice, executable and shared object files must have
segment images whose file offsets and virtual addresses are congruent, modulo the page size.

The preferred page size for virtual memory management purposes for an Itanium architecture 64-
bit segment is contained in the p_align field of the program header entry describing that
segment. The p_align field must contain 4 KB (0x1000) or a page size as defined in Section 7

Table 5-1. Program Header Types, p_type

Name Value

PT_IA_64_ARCHEXT 0x70000000

PT_IA_64_UNWIND 0x70000001

Table 5-2. Program Header Flags, p_flags

Name Value

PF_IA_64_NORECOV 0x80000000
Intel® Itanium™ Processor-specific Application Binary Interface (ABI) 5-1

Program Loading and Dynamic Linking
of the Intel® IA-64 Architecture Programmer’s Reference Manual. Virtual addresses and file
offsets for Itanium architecture 64-bit segments are congruent modulo either the value contained in
the p_align field or 4KB (0x1000), whichever is larger.

The following examples show a 64k alignment; virtual addresses and file offsets for segments are
congruent modulo 64k (0x10000).

Figure 5-1. Example Executable File

Figure 5-2. Example Program Header Segments

Although the example’s file offsets and virtual addresses are congruent modulo 64KB for both text
and data, up to four file pages hold impure text or data (depending on page size and file system
block size).

• The first text page contains the ELF header, the program header table, and other information.

• The last text page holds a copy of the beginning of data.

• The first data page has a copy of the end of text.

• The last data page may contain file information not relevant to the running process.

File Offset File Virtual Address

0 ELF header

Program header table

Other information

0x110 Text segment
. . .

0x4af630 bytes

0x4000000000000110

0x40000000004af73f

0x4af740
Data segment

. . .
0x16768 bytes

0x600000000000f740

0x6000000000025ea7

0x4c5ea0
Other information

. . .

Member Text Data

p_type PT_LOAD PT_LOAD

p_offset 0x110 0x4af740

p_vaddr 0x4000000000000110 0x600000000000f740

p_paddr unspecified unspecified

p_filesz 0x4af630 0x16768

p_memsz 0x4af630 0x46b90

p_flags PF_R+PF_X PF_R+PF_W+PF_X

p_align 0x10000 0x10000
5-2 Intel® Itanium™ Processor-specific Application Binary Interface (ABI)

Program Loading and Dynamic Linking
Logically, the system enforces the memory permissions as if each segment were complete and
separate; segment addresses are adjusted to ensure each logical page in the address space has a
single set of permissions. In the example above, the region of the file holding the end of text and
the beginning of data will be mapped twice: at one virtual address for text and at a different virtual
address for data.

The end of the data segment requires special handling for uninitialized data, which the system
defines to begin with zero values. Thus if a file’s last data page includes information not in the
logical memory page, the extraneous data must be set to zero, not the unknown contents of the
executable file. “Impurities” in the other three pages are not logically part of the process image;
whether the system expunges them is unspecified. The memory image for this program follows,
assuming 64KB (0x10000) pages.

Figure 5-3. Example Process Image Segments

On the Itanium architecture, both executable and shared object segments contain position-
independent code. This lets a segment's virtual address change from one process to another,
without invalidating execution behavior. Furthermore, there is no assumption that the individual
segments for a given executable or shared object are fixed relatively in relation to one another. For
example, the system might load all read-only segments for a process in one range of memory
addresses and all read-write segments in a different range of addresses. Therefore, while the
addresses shown in the example in Figures 5-3, 5-4 and 5-5 show the data segment for an
executable immediately following the text segment, there is no requirement that it does so. The
addresses assigned for each segment by the link editor, however, must not overlap.

Because dynamically linked Itanium architecture 64-bit executable files are position-independent,
the exec routines may choose to load such files at different addresses than those specified in the
file's program header. The dynamic linker must be prepared to deal with this possibility.

Address Contents Segment

0x4000000000000000
Header padding
0x110 bytes

0x4000000000000110
Text segment

. . .
0x4af630 bytes

Text

0x40000000004af740
Data padding
0x8c0 bytes

0x6000000000000000
Text padding

0xf740 bytes

0x600000000000f740
Data segment

. . .
0x16768 bytes

Data

0x6000000000025ea8
Uninitialized data

0x30428 zero bytes

0x60000000000562d0
Page padding

0x9d30 zero bytes
Intel® Itanium™ Processor-specific Application Binary Interface (ABI) 5-3

Program Loading and Dynamic Linking
5.2.1 Linktime and Runtime Addresses

Virtual addresses assigned by the linker when creating an executable or shared object file are
known as link-time virtual addresses. Since position-independent executables and shared objects
may be loaded at different addresses than those assigned by the linker, runtime virtual addresses
differ from linktime virtual address by a constant value. Since there is no fixed address relationship
at runtime among segments created at linktime, the constant value must be calculated based on the
segment containing the address in question. The constant is the difference between the address at
which the containing segment was loaded and the address assigned for that segment by the linker.
The following table illustrates the calculation for an example text object.

5.2.2 Initializations

As the implementation constructs the new process, it is responsible for a number of initialization
actions. Some of these have been described in Section 3.3.5, “Process Startup” on page 3-6. In
addition to those steps, the implementation must:

1. Ensure the process environment has been properly initialized .

2. The global variable _environ must be initialized to point to the environment, before the
initialization routines are executed. The execution of the initialization routines may result in
the modification of _environ.

3. Pre-initializations routines in the executable, described in “Dynamic Linking” in Chapter 5 of
the System V ABI, must be called, according to standard calling conventions.

4. Initialization routines, described in”“Dynamic Linking” in Chapter 5 of the System V ABI and
in the following section, in the executable and in all loaded shared objects must be called,
according to standard calling conventions. The only order specified is that, for every library
dependency “A depends on B”, the initialization routines for B must be called before those for
A.

5.3 Dynamic Linking

5.3.1 Dynamic Linker

When building an executable file that uses dynamic linking, the link editor adds a program header
element of type PT_INTERP to an executable file, telling the system to invoke the dynamic linker
as the program interpreter. The location of the dynamic linker, to be recorded on the PT_INTERP
string, varies depending on the code model, architecture and byte order.

Table 5-3. Example Runtime Address Calculation

Value or Calculation Result

Address as determined by link editor 0x40000000000532f0

Segment address contained in program header 0x4000000000000110

Base address of segment in file 0x4000000000000000

Base address of segment in process 0x4c80000000000000

Runtime minus link-time base address 0x0c80000000000000

Address of object in process 0x4c800000000532f0
5-4 Intel® Itanium™ Processor-specific Application Binary Interface (ABI)

Program Loading and Dynamic Linking
5.3.2 Dynamic Section

All dynamic section entries containing addresses (entries that use the d_ptr member) contain
link-time virtual addresses, as described above. The dynamic linker must relocate these addresses
based on the difference between the link-time and runtime addresses of the segments referenced by
the d_ptr member.

Dynamic section entries give information to the dynamic linker. Some of this information is
processor-specific, including the interpretation of some entries in the dynamic structure.

DT_PLTGOT On the Itanium architecture, this entry’s d_ptr member gives the
address contained in the global pointer (gp) for the object.

The Itanium architecture defines one processor-specific dynamic section tag value.

DT_IA_64_PLT_RESERVE
This element’s d_ptr member contains the address of the first of three
8-byte words in the short data segment reserved for use by the dynamic
linker. The three words are contiguous, with the second and third words
growing toward higher addresses.

5.3.3 Shared Object Dependencies

The System V ABI describes, in “Shared Object Dependencies” in Chapter 5, the mechanism by
which the dynamic linker locates shared object files and attaches them to a process image. When
implemented on Itanium architecture, the ABI supports a variety of code models, and since mixing
models is not allowed, the dynamic linker must be able to locate shared object files that match the
model of an executable program which has shared object dependencies. When applying the
algorithm in the System V ABI, the dynamic linker will treat the following locations as the “default
directory” location:

Table 5-4. Dynamic Linker Location

Architecture Code Model Byte Order Dynamic Linker Name

Itanium™
Architecture

ILP32 Little-Endian /usr/lib/ia64l32/ld.so.1

ILP32 Big-Endian /usr/lib/ia64b32/ld.so.1

LP64 Little-Endian /usr/lib/ia64l64/ld.so.1

LP64 Big-Endian /usr/lib/ia64b64/ld.so.1

Table 5-5. Dynamic Section Tag, d_tag

Name Value

DT_IA_64_PLT_RESERVE 0x70000000
Intel® Itanium™ Processor-specific Application Binary Interface (ABI) 5-5

Program Loading and Dynamic Linking
5.3.4 Global Offset Table

In general, position-independent code cannot contain absolute virtual addresses. Global Offset
Tables hold absolute addresses in private data, thus making the addresses available without
compromising the position-independence and sharability of a program’s text. A program references
its global offset table using the global pointer (gp) with position-independent addressing and
extracts absolute values, thus redirecting position-independent references to absolute locations.

Initially, the global offset table holds information as required by its relocation entries (see
Section 4.3, “Relocations” on page 4-6). After the system creates memory segments for a loadable
object file, the dynamic linker processes the relocation entries, some of which will refer to the
global offset table. The dynamic linker determines the associated symbol values, calculates their
absolute addresses, and sets the appropriate memory table entries to the proper values. Although
the absolute addresses are unknown when the link editor builds an object file, the dynamic linker
knows the addresses of all memory segments and can thus calculate the absolute addresses of the
symbols contained therein.

If a program requires direct access to the absolute address of a symbol, that symbol will have a
global offset table entry. Because the executable file and each shared object have separate global
offset tables, a symbol's address may appear in several tables. The dynamic linker processes all the
global offset table relocations before giving control to any code in the process image, thus ensuring
the absolute addresses are available during execution.

The system may choose different memory segment addresses for the same shared object in
different programs; it may even choose different library addresses for different executions of the
same program. Nonetheless, memory segments do not change addresses once the process image is
established. As long as a process exists, its memory segments reside at fixed virtual addresses.

5.3.5 Function Addresses

On the Itanium architecture, when one function calls another it is the caller's responsibility to reset
the global pointer (gp) to the correct value for the object containing the called function. Thus, to
call a function a caller needs two pieces of information: the address of the function and the value
its global pointer should have. These two pieces of information are contained in a structure known
as a function descriptor (see Conventions). So that a function pointer may be passed from function
to function and still retain enough information to enable the function to be called, a function pointer
is defined to be a pointer to the function descriptor for that function.

Each executable or shared object can have its own copy of the function descriptor entry for any
function it calls to make access to function descriptors more efficient. But, when any shared object
or the executable needs to reference the address of a function, each such reference must always
retrieve the same address or comparisons of function pointers will not be predictable. Thus, there
must be a unique function descriptor entry that can be referenced whenever the address of a

Table 5-6. Default Shared Object Location

Architecture Code Model Byte Order Shared Object Location

Itanium™
Architecture

ILP32 Little-Endian /usr/lib/ia64l32

ILP32 Big-Endian /usr/lib/ia64b32

LP64 Little-Endian /usr/lib/ia64l64

LP64 Big-Endian /usr/lib/ia64b64

NOTE: The standard location /usr/lib is reserved to the IA-32 ABI.
5-6 Intel® Itanium™ Processor-specific Application Binary Interface (ABI)

Program Loading and Dynamic Linking
function is taken. This entry is known as the “official” function descriptor for a function. The
“official” function descriptor for any function is created and initialized by the dynamic linker as
needed in response to R_IA_64_FPTR32MSB, R_IA_64_FPTR32LSB,
R_IA_64_FPTR64MSB and R_IA_64_FPTR64LSB relocations (see Section 4.3,
“Relocations” on page 4-6).

5.3.6 Procedure Linkage Table

The link editor cannot resolve execution transfers (such as function calls) from one executable or
shared object to another. So that function addresses can be assigned dynamically at runtime without
compromising the position-independence and sharability of a program's text, function addresses
must be kept in private data and retrieved at the time a function is called. On the Itanium
architecture, the function addresses are kept in local function descriptor entries. Each entry is a pair
containing the address of the referenced function and the value of the global pointer (gp) for the
object containing the function's definition. The dynamic linker determines the destinations'
absolute addresses and global pointer value and modifies the function descriptor's memory
accordingly.

The function address and global pointer values are retrieved from the local function descriptor by a
portion of code known as an import stub. The import stub may be compiled inline at the point of
call by the compiler, or it may be placed in the procedure linkage table. The procedure linkage
table is contained in an object's read-only text. Each function called directly by the object, but
external to the object, will have a local function desciptor.

The dynamic linker is allowed to implement lazy binding, where each local function descriptor is
not bound until the first call using that function descriptor. Instead, the initial value of the function
address field of each function descriptor is initialized by the link editor to the address of a
secondary PLT entry that is unique to the function being called. The secondary PLT entry must
transfer control to the dynamic linker's lazy binding entry point, which will then resolve the
reference, update the local function descriptor, and complete the call.

In order for the implementation to perform lazy binding correctly, the application must conform to
the following conventions for transfer of control to the dynamic linker's lazy binding entry point:

1. The link editor must allocate a PLT Reserve area, consisting of three contiguous doublewords
in the object's data segment. The DT_IA_64_PLT_RESERVE dynamic section entry must
identify the first of these three doublewords. These words are initialized by the dynamic linker
at program startup.

2. The relocation index for the function being called must be placed into GR 15, so that the
dynamic linker can identify the target of the call. This value is an index into the portion of the
dynamic relocation table addressed by the DT_JMPREL dynamic section entry. The
designated relocation entry will have type R_IA_64_IPLTMSB or R_IA_64_IPLTLSB, and its
offset will specify the local function descriptor entry referenced by the call.

3. An 8-byte identifier unique to the calling module must be placed into GR 16, so that the
dynamic linker can identify the object from which the call originated, and thereby locate that
object's relocation table. This identifier is found in the first double-word of the PLT Reserve
area.

4. The gp register must be set to the dynamic linker's own gp value. This value is found in the
second double-word of the PLT Reserve area.

5. The dynamic linker's lazy binding entry point is found in the third double-word of the PLT
Reserve area.
Intel® Itanium™ Processor-specific Application Binary Interface (ABI) 5-7

Program Loading and Dynamic Linking
Note that, by the time control is transferred to the secondary PLT entry, the gp value cannot be
trusted, since the gp field of the local function descriptor is not initialized until the function is
bound. Therefore, the import stub must copy the gp value to a scratch register before loading the gp
value from the function descriptor, so that the secondary PLT entry may recover the original value
in order to locate the PLT Reserve area.

The link editor must create import stubs, secondary PLT entries, and allocate local function
descriptors for any direct call that cannot be statically bound within the same object (including
calls where a definition is present, but is not protected against pre-emption). If an import stub is
inlined by the compiler, the linker must still allocate the local function descriptor in response to the
R_IA_64_PLTOFF relocation, and a secondary PLT entry to which the local function descriptor
should point initially.

The LD_BIND_NOW environment variable can change dynamic linking behavior. If its value is
non-null, the dynamic linker evaluates procedure linkage table entries before transferring control to
the program. That is, the dynamic linker processes relocation entries of type R_IA_64_IPLTMSB
and R_IA_64_IPLTLSB during process initialization. Otherwise, the dynamic linker evaluates
procedure linkage table entries lazily, delaying symbol resolution and relocation until the first
execution of a table entry.

Note: Lazy binding generally improves overall application performance, because unused symbols do not
incur the dynamic linking overhead. Nevertheless, two situations make lazy binding undesirable
for some applications. First, the initial reference to a shared object function takes longer than
subsequent calls, because the dynamic linker intercepts the call to resolve the symbol. Some
applications cannot tolerate this unpredictability. Second, if an error occurs and the dynamic linker
cannot resolve the symbol, the dynamic linker will terminate the program. Under lazy binding, this
might occur at arbitrary times. Once again, some applications cannot tolerate this unpredictability.
By turning off lazy binding, the dynamic linker forces the failure to occur during process
initialization, before the application receives control.

The following example shows a recommended implementation of these conventions:

Figure 5-4. Procedure Linkage Table Sample Entries
.PLT0: (initial special reserved entry)

mov r2 = r14 ;;

addl r14 = @gprel(plt_reserve), r2 ;;

ld8 r16 = [r14], 8 ;;

ld8 r17 = [r14], 8 ;;

ld8 gp = [r14]

mov b6 = r17

br b6

.PLT1: (entry for symbol name1)

addl r15 = @pltoff(name1), gp ;;

ld8 r16 = [r15], 8

mov r14 = gp ;;

ld8 gp = [r15]

mov b6 = r16

br b6

.PLT1a: mov r15 = reloc_index

br .PLT0
5-8 Intel® Itanium™ Processor-specific Application Binary Interface (ABI)

Program Loading and Dynamic Linking
Following the steps below, the dynamic linker and the program “cooperate” to resolve symbolic
references through the procedure linkage table and the global offset table.

1. When first creating the memory image of the program, the dynamic linker sets three reserved
8-byte words in each object's short data segment to special values. Steps below explain more
about those values (see also the description for DT_IA_64_PLT_RESERVE, above).

2. For illustration, assume the program calls name1, transferring control to the label .PLT1.

3. The first instruction calculates the address of the local function descriptor entry for name1 by
adding its offset from gp to the value of gp. The address is saved in scratch register r15.

4. The third instruction saves the value of gp in scratch register r14.

5. The second and fourth instructions extract the information from the local function descriptor.
The second instruction extracts the function address, storing its value in scratch register r16
while incrementing r15 by eight. The fourth instruction loads gp with the value stored in the
local function descriptor. The link editor initializes the local function descriptor entry so that
the function address contains the address of the mov instruction labeled .PLT1a. The procedure
linkage table sets scratch branch register b6 to the address saved in r16 and branches to that
address.

6. Consequently, the program saves a relocation index reloc_index in scratch register r15.
The relocation index is a signed 22-bit immediate index into the portion of the relocation table
addressed by the DT_JMPREL dynamic section entry. The designated relocation entry will
have type R_IA_64_IPLTMSB or R_IA_64_IPLTLSB, and its offset will specify the local
function descriptor entry referenced in the previous addl instruction. The relocation entry also
contains a symbol table index, thus telling the dynamic linker what symbol is being
referenced, name1 in this case.

7. After assigning the relocation index, the program then branches to .PLT0, the first entry in the
procedure linkage table. The first five instructions in this entry de-reference the three special
values reserved for the dynamic linker in the short data segment using the scratch register r14,
which was set to the value of gp for the object calling name1. The first instruction saves r14 in
scratch register r2. This allows the use of a 22-bit immediate value in the second instruction
(the addl instruction can only be used with general registers r0, r1, r2 and r3). The second
instruction adds to r2 the offset from the global pointer of the invoking object to the first of the
three values set by the dynamic linker for that object. This value is stored back in r14. The
third instruction stores the contents of the first reserved entry in scratch register r16,
incrementing r14 by eight. This entry gives the dynamic linker an 8-byte word of identifying
information. The fourth instruction extracts the second reserved entry, saving it in scratch
register r17, while, again, incrementing r14 by eight. The second reserved entry is initialized
by the dynamic linker to contain the address of a function binding routine within the dynamic
linker itself. The fifth instruction sets the value of gp to the value contained in the third
reserved entry. The dynamic linker sets this entry to contain the gp value for the object
containing the dynamic linker, itself. The program then sets scratch branch register b6 to the
address saved in r17 and branches to that address.

8. When the dynamic linker receives control, two scratch registers contain information it will use
in relocating the function call: r15 contains the index of the relocation entry and r16 contains
an 8-byte identifying word. The dynamic linker looks at the designated relocation entry, finds
the symbol's value and the value of gp for the object containing the symbol, stores these values
in the local function descriptor entry for name1, and transfers control to the desired
destination.

9. Subsequent executions of the procedure linkage table entry will transfer directly to name1
instead of to .PLT0, bypassing the call to the dynamic linker.
Intel® Itanium™ Processor-specific Application Binary Interface (ABI) 5-9

Program Loading and Dynamic Linking
5.3.7 Initialization and Termination Functions

The implementation is responsible for executing the initialization functions specified by DT_INIT,
DT_INIT_ARRAY, and DT_PREINIT_ARRAY entries in the executable file and shared object
files for a process, and the termination (or finalization) functions specified by DT_FINI and
DT_FINI_ARRAY, as specified by the System V ABI. The user program plays no further part in
executing the initialization and termination functions specified by these dynamic tags.

The values contained in DT_INIT, DT_INIT_ARRAY, and DT_PREINIT_ARRAY are virtual
address of functions within the shared object. It does not contain the address of the function
descriptors.
5-10 Intel® Itanium™ Processor-specific Application Binary Interface (ABI)

Libraries 6

6.1 Unwind Library Interface

This section defines the Unwind Library interface, expected to be provided by any Itanium
architecture psABI-compliant system. This is the interface on which the C++ ABI exception-
handling facilities are built. We assume as a basis the unwind descriptor tables described in the
base Itanium™ Software Conventions and Runtime Architecture Guide. The focus here will be on
the APIs for accessing those structures.

It is intended that nothing in this section be specific to C++, though some parts are clearly intended
to support C++ features.

The unwind library interface consists of at least the following routines:
 _Unwind_RaiseException,

 _Unwind_Resume,

 _Unwind_DeleteException,

 _Unwind_GetGR,

 _Unwind_SetGR,

 _Unwind_GetIP,

 _Unwind_SetIP,

 _Unwind_GetRegionStart,

 _Unwind_GetLanguageSpecificData,

 _Unwind_ForcedUnwind

In addition, two data types are defined (_Unwind_Context and _Unwind_Exception) to
interface a calling runtime (such as the C++ runtime) and the above routines. All routines and
interfaces behave as if defined extern “C”. In particular, the names are not mangled. All names
defined as part of this interface have a “_Unwind_” prefix.

Lastly, a language and vendor specific personality routine will be stored by the compiler in the
unwind descriptor for the stack frames requiring exception processing. The personality routine is
called by the unwinder to handle language-specific tasks such as identifying the frame handling a
particular exception.

6.1.1 Exception Handler Framework

6.1.1.1 Reasons for Unwinding

There are two major reasons for unwinding the stack:

• exceptions, as defined by languages that support them (such as C++)

• “forced” unwinding (such as caused by longjmp or thread termination).

The interface described here tries to keep both similar. There is a major difference, however.

• In the case where an exception is thrown, the stack is unwound while the exception
propagates, but it is expected that the personality routine for each stack frame knows whether
it wants to catch the exception or pass it through. This choice is thus delegated to the
personality routine, which is expected to act properly for any type of exception, whether
“native” or “foreign”. Some guidelines for “acting properly” are given below.
Intel® Itanium™ Processor-specific Application Binary Interface (ABI) 6-1

Libraries
• During “forced unwinding”, on the other hand, an external agent is driving the unwinding. For
instance, this can be the longjmp routine. This external agent, not each personality routine,
knows when to stop unwinding. The fact that a personality routine is not given a choice about
whether unwinding will proceed is indicated by the _UA_FORCE_UNWIND flag.

To accommodate these differences, two different routines are proposed.

 _Unwind_RaiseException performs exception-style unwinding, under control of the
personality routines. _Unwind_ForcedUnwind, on the other hand, performs unwinding,
but gives an external agent the opportunity to intercept calls to the personality routine. This is
done using a proxy personality routine, that intercepts calls to the personality routine, letting
the external agent override the defaults of the stack frame's personality routine.

As a consequence, it is not necessary for each personality routine to know about any of the possible
external agents that may cause an unwind. For instance, the C++ personality routine need deal only
with C++ exceptions (and possibly disguising foreign exceptions), but it does not need to know
anything specific about unwinding done on behalf of longjmp or pthreads cancellation.

6.1.1.2 The Unwind Process

The standard ABI exception handling / unwind process begins with the raising of an exception, in
one of the forms mentioned above. This call specifies an exception object and an exception class.

The runtime framework then starts a two-phase process:

• In the search phase, the framework repeatedly calls the personality routine, with the
_UA_SEARCH_PHASE flag as described below, first for the current ip and register state, and
then unwinding a frame to a new ip at each step, until the personality routine reports either
success (a handler found in the queried frame) or failure (no handler) in all frames. It does not
actually restore the unwound state, and the personality routine must access the state through
the API.

• If the search phase reports failure, e.g. because no handler was found, it will call
terminate() rather than commence phase 2.

If the search phase reports success, the framework restarts in the cleanup phase. Again, it
repeatedly calls the personality routine, with the _UA_CLEANUP_PHASE flag as described
below, first for the current ip and register state, and then unwinding a frame to a new ip at
each step, until it gets to the frame with an identified handler. At that point, it restores the
register state, and control is transferred to the user landing pad code.

Each of these two phases uses both the unwind library and the personality routines, since the
validity of a given handler and the mechanism for transferring control to it are language-dependent,
but the method of locating and restoring previous stack frames is language independent.

A two-phase exception-handling model is not strictly necessary to implement C++ language
semantics, but it does provide some benefits. For example, the first phase allows an exception-
handling mechanism to dismiss an exception before stack unwinding begins, which allows
resumptive exception handling (correcting the exceptional condition and resuming execution at the
point where it was raised). While C++ does not support resumptive exception handling, other
languages do, and the two-phase model allows C++ to coexist with those languages on the stack.

Note that even with a two-phase model, we may execute each of the two phases more than once for
a single exception, as if the exception was being thrown more than once. For instance, since it is
not possible to determine if a given catch clause will rethrow or not without executing it, the
exception propagation effectively stops at each catch clause, and if it needs to restart, restarts at
phase 1. This process is not needed for destructors (cleanup code), so the phase 1 can safely
process all destructor-only frames at once and stop at the next enclosing catch clause.
6-2 Intel® Itanium™ Processor-specific Application Binary Interface (ABI)

Libraries
For example, if the first two frames unwound contain only cleanup code, and the third frame
contains a C++ catch clause, the personality routine in phase 1 does not indicate that it found a
handler for the first two frames. It must do so for the third frame, because it is unknown how the
exception will propagate out of this third frame, e.g. by rethrowing the exception or throwing a new
one in C++.

The API specified by the Itanium architecture psABI for implementing this framework is described
in the following sections.

6.1.2 Data Structures

6.1.2.1 Reason Codes

The unwind interface uses reason codes in several contexts to identify the reasons for failures or
other actions, defined as follows:
typedef enum {

_URC_NO_REASON = 0,

_URC_FOREIGN_EXCEPTION_CAUGHT = 1,

_URC_FATAL_PHASE2_ERROR = 2,

_URC_FATAL_PHASE1_ERROR = 3,

_URC_NORMAL_STOP = 4,

_URC_END_OF_STACK = 5,

_URC_HANDLER_FOUND = 6,

_URC_INSTALL_CONTEXT = 7,

_URC_CONTINUE_UNWIND = 8

} _Unwind_Reason_Code;

The interpretation of these codes is described below.

6.1.2.2 Exception Header

The unwind interface uses a pointer to an exception header object as its representation of an
exception being thrown. In general, the full representation of an exception object is language- and
implementation-specific, but it will be prefixed by a header understood by the unwind interface,
defined as follows:
 typedef void (*_Unwind_Exception_Cleanup_Fn)

(_Unwind_Reason_Code reason,

 struct _Unwind_Exception *exc);

 struct _Unwind_Exception {

 uint64 exception_class;

 _Unwind_Exception_Cleanup_Fn exception_cleanup;

 uint64 private_1;

 uint64 private_2;

 };

An _Unwind_Exception object must be double-word aligned. The first two fields are set by
user code prior to raising the exception, and the latter two should never be touched except by the
runtime.

The exception_class field is a language- and implementation-specific identifier of the kind
of exception. It allows a personality routine to distinguish between native and foreign exceptions,
for example.
Intel® Itanium™ Processor-specific Application Binary Interface (ABI) 6-3

Libraries
The exception_cleanup routine is called whenever an exception object needs to be destroyed
by a different runtime than the runtime which created the exception object, for instance if a Java
exception is caught by a C++ catch handler. In such a case, a reason code (see above) indicates why
the exception object needs to be deleted:

• _URC_FOREIGN_EXCEPTION_CAUGHT = 1: This indicates that a different runtime caught
this exception. Nested foreign exceptions, or rethrowing a foreign exception, result in
undefined behavior.

• _URC_FATAL_PHASE1_ERROR = 3: The personality routine encountered an error during
phase 1, other than the specific error codes defined.

• _URC_FATAL_PHASE2_ERROR = 2: The personality routine encountered an error during
phase 2, for instance a stack corruption.

Note: Normally, all errors should be reported during phase 1 by returning from
_Unwind_RaiseException. However, landing pad code could cause stack corruption
between phase 1 and phase 2. For a C++ exception, the runtime should call terminate() in that
case.

The private unwinder state (private_1 and private_2) in an exception object should be
neither read by nor written to by personality routines or other parts of the language-specific
runtime. It is used by the specific implementation of the unwinder on the host to store internal
information, for instance to remember the final handler frame between unwinding phases.

In addition to the above information, a typical runtime such as the C++ runtime will add language-
specific information used to process the exception. This is expected to be a contiguous area of
memory after the _Unwind_Exception object, but this is not required as long as the matching
personality routines know how to deal with it, and the exception_cleanup routine de-
allocates it properly.

6.1.2.3 Unwind Context

The _Unwind_Context type is an opaque type used to refer to a system-specific data structure
used by the system unwinder. This context is created and destroyed by the system, and passed to
the personality routine during unwinding.

 struct _Unwind_Context

6.1.2.4 Personality Routine

As documented in Chapter 11 of the Itanium™ Software Conventions and Runtime Architecture
Guide, the unwind tables consists of three fields as illustrated in Figure 6-1; each field is a 64-bit
doubleword. The first two fields define the starting and ending addresses of the procedure,
respectively, and the third field points to a variable-size information block containing the unwind
descriptor list and language-specific data area. The ending address is the address of the first bundle
beyond the end of the procedure. These values are all segment-relative offsets, not absolute
addresses, so they do not require run-time relocations. The unwind table is sorted by the procedure
start address. The shaded area in the figure represents the language-specific data area.
6-4 Intel® Itanium™ Processor-specific Application Binary Interface (ABI)

Libraries
The personality routine identifier is accessed by adding the size of the unwind descriptor area
(ulen), which is a count of doublewords, not bytes), plus the size of the header doubleword, to the
information block pointer. This identifier contains the 64-bit gp-relative offset of a doubleword in
the linkage table that contains a function pointer, which in turn points to the function descriptor of
the personality routine. The function pointer itself must be in the data segment because it may need
relocation. The dispatcher should call this routine during the first unwind only if the EHANDLER bit
is set, and during the second unwind only if the UHANDLER bit is set. The language-specific data
immediately follows the personality routine identifier, so the address of this area must be made
available to the personality routine.

6.1.3 Throwing an Exception

6.1.3.1 _Unwind_RaiseException

 _Unwind_Reason_Code _Unwind_RaiseException

 (struct _Unwind_Exception *exception_object);

Raise an exception, passing along the given exception object, which should have its
exception_class and exception_cleanup fields set. The exception object has been
allocated by the language-specific runtime, and has a language-specific format, except that it must
contain an _Unwind_Exception struct (see Exception Header above).
_Unwind_RaiseException does not return, unless an error condition is found (such as no
handler for the exception, bad stack format, etc.). In such a case, an _Unwind_Reason_Code
value is returned. Possibilities are:

• _URC_END_OF_STACK: The unwinder encountered the end of the stack during phase 1,
without finding a handler. The unwind runtime will not have modified the stack. The C++
runtime will normally call uncaught_exception() in this case.

• _URC_FATAL_PHASE1_ERROR: The unwinder encountered an unexpected error during
phase 1, e.g. stack corruption. The unwind runtime will not have modified the stack. The C++
runtime will normally call terminate() in this case.

Figure 6-1. Unwind Table

start

end

v

Unwind Table Info. Block

language-

info ptr.

unwind

personality

descriptors

specific
data area

f ulen
Intel® Itanium™ Processor-specific Application Binary Interface (ABI) 6-5

Libraries
If the unwinder encounters an unexpected error during phase 2, it should return
_URC_FATAL_PHASE2_ERROR to its caller. In C++, this will usually be _cxa_throw, which
will call terminiate().

Note: The unwind runtime will likely have modified the stack (e.g. popped frames from it) or register
context, or landing pad code may have corrupted them. As a result, the caller of
_Unwind_RaiseException could make no assumptions about the state of its stack or
registers.

6.1.3.2 _Unwind_ForcedUnwind

 typedef _Unwind_Reason_Code (*_Unwind_Stop_Fn)

(int version,

 _Unwind_Action actions,

 uint64 exceptionClass,

 struct _Unwind_Exception *exceptionObject,

 struct _Unwind_Context *context,

 void *stop_parameter);

 _Unwind_Reason_Code _Unwind_ForcedUnwind

 (struct _Unwind_Exception *exception_object,

_Unwind_Stop_Fn stop,

void *stop_parameter);

Raise an exception for forced unwinding, passing along the given exception object, which should
have its exception_class and exception_cleanup fields set. The exception object has
been allocated by the language-specific runtime, and has a language-specific format, except that it
must contain an _Unwind_Exception struct (see Exception Header above).

Forced unwinding is a single-phase process (phase 2 of the normal exception-handling process).
The stop and stop_parameter parameters control the termination of the unwind process,
instead of the usual personality routine query. The stop function parameter is called for each
unwind frame, with the parameters described for the usual personality routine below, plus an
additional stop_parameter.

When the stop function identifies the destination frame, it transfers control (according to its own,
unspecified, conventions) to the user code as appropriate without returning, normally after calling
_Unwind_DeleteException. If not, it should return an _Unwind_Reason_Code value as
follows:

• _URC_NO_REASON: This is not the destination frame. The unwind runtime will call the
frame’s personality routine with the _UA_FORCE_UNWIND and _UA_CLEANUP_PHASE
flags set in actions, and then unwind to the next frame and call the stop function again.

• _URC_END_OF_STACK: In order to allow _Unwind_ForcedUnwind to perform special
processing when it reaches the end of the stack, the unwind runtime will call it after the last
frame is rejected, with a NULL stack pointer in the context, and the stop function must catch
this condition (i.e. by noticing the NULL stack pointer). It may return this reason code if it
cannot handle end-of-stack.

• _URC_FATAL_PHASE2_ERROR: The stop function may return this code for other fatal
conditions, e.g. stack corruption.

If the stop function returns any reason code other than _URC_NO_REASON, the stack state is
indeterminate from the point of view of the caller of _Unwind_ForcedUnwind. Rather than
attempt to return, therefore, the unwind library should use the exception_cleanup entry in
the exception, and then call abort().
6-6 Intel® Itanium™ Processor-specific Application Binary Interface (ABI)

Libraries
Note: Example: longjmp_unwind()

The expected implementation of longjmp_unwind() is as follows. The setjmp() routine
will have saved the state to be restored in its customary place, including the frame pointer. The
longjmp_unwind() routine will call _Unwind_ForcedUnwind with a stop function
that compares the frame pointer in the context record with the saved frame pointer. If equal, it
will restore the setjmp() state as customary, and otherwise it will return
_URC_NO_REASON or _URC_END_OF_STACK.

Note: If a future requirement for two-phase forced unwinding were identified, an alternate routine could
be defined to request it, and an actions parameter flag defined to support it.

6.1.3.3 _Unwind_Resume

 void _Unwind_Resume (struct _Unwind_Exception *exception_object);

Resume propagation of an existing exception e.g. after executing cleanup code in a partially
unwound stack. A call to this routine is inserted at the end of a landing pad that performed cleanup,
but did not resume normal execution. It causes unwinding to proceed further.

Note: _Unwind_Resume should not be used to implement rethrowing. To the unwinding runtime, the
catch code that rethrows was a handler, and the previous unwinding session was terminated before
entering it. Rethrowing is implemented by calling _Unwind_RaiseException again with the
same exception object.

Note: This is the only routine in the unwind library which is expected to be called directly by generated
code: it will be called at the end of a landing pad in a “landing-pad” model.

6.1.4 Exception Object Management

6.1.4.1 _Unwind_DeleteException

 void _Unwind_DeleteException

 (struct _Unwind_Exception *exception_object);

Deletes the given exception object. If a given runtime resumes normal execution after catching a
foreign exception, it will not know how to delete that exception. Such an exception will be deleted
by calling _Unwind_DeleteException. This is a convenience function that calls the function
pointed to by the exception_cleanup field of the exception header.

6.1.5 Context Management

These functions are used for communicating information about the unwind context (i.e. the unwind
descriptors and the user register state) between the unwind library and the personality routine and
landing pad. They include routines to read or set the context record images of registers in the stack
frame corresponding to a given unwind context, and to identify the location of the current unwind
descriptors and unwind frame.

6.1.5.1 _Unwind_GetGR

 uint64 _Unwind_GetGR

 (struct _Unwind_Context *context, int index);
Intel® Itanium™ Processor-specific Application Binary Interface (ABI) 6-7

Libraries
This function returns the 64-bit value of the given general register. The register is identified by its
index: 0 to 31 are for the fixed registers, and 32 to 127 are for the stacked registers.

During the two phases of unwinding, only GR1 has a guaranteed value, which is the Global Pointer
(gp) of the frame referenced by the unwind context. If the register has its NAT bit set, the behavior
is unspecified.

6.1.5.2 _Unwind_SetGR

 void _Unwind_SetGR

 (struct _Unwind_Context *context,

 int index,

 uint64 new_value);

This function sets the 64-bit value of the given register, identified by its index as for
_Unwind_GetGR. The NAT bit of the given register is reset.

The behavior is guaranteed only if the function is called during phase 2 of unwinding, and applied
to an unwind context representing a handler frame, for which the personality routine will return
_URC_INSTALL_CONTEXT. In that case, only registers GR15, GR16, GR17, GR18 should be
used. These scratch registers are reserved for passing arguments between the personality routine
and the landing pads.

6.1.5.3 _Unwind_GetIP

 uint64 _Unwind_GetIP

 (struct _Unwind_Context *context);

This function returns the 64-bit value of the instruction pointer (ip).

During unwinding, the value is guaranteed to be the address of the bundle immediately following
the call site in the function identified by the unwind context. This value may be outside of the
procedure fragment for a function call that is known to not return (such as _Unwind_Resume).

6.1.5.4 _Unwind_SetIP

 void _Unwind_SetIP

 (struct _Unwind_Context *context,

 uint64 new_value);

This function sets the value of the instruction pointer (ip) for the routine identified by the unwind
context.

The behavior is guaranteed only when this function is called for an unwind context representing a
handler frame, for which the personality routine will return _URC_INSTALL_CONTEXT. In this
case, control will be transferred to the given address, which should be the address of a landing pad.
6-8 Intel® Itanium™ Processor-specific Application Binary Interface (ABI)

Libraries
6.1.5.5 _Unwind_GetLanguageSpecificData

 uint64 _Unwind_GetLanguageSpecificData

 (struct _Unwind_Context *context);

This routine returns the address of the language-specific data area for the current stack frame.

Note: This routine is not strictly required: it could be accessed through _Unwind_GetIP using the
documented format of the UnwindInfoBlock, but since this work has been done for finding the
personality routine in the first place, it makes sense to cache the result in the context. We could also
pass it as an argument to the personality routine.

6.1.5.6 _Unwind_GetRegionStart

 uint64 _Unwind_GetRegionStart

 (struct _Unwind_Context *context);

This routine returns the address of the beginning of the procedure or code fragment described by
the current unwind descriptor block.

This information is required to access any data stored relative to the beginning of the procedure
fragment. For instance, a call site table might be stored relative to the beginning of the procedure
fragment that contains the calls. During unwinding, the function returns the start of the procedure
fragment containing the call site in the current stack frame.

6.1.6 Personality Routine

 _Unwind_Reason_Code (*__personality_routine)

 (int version,

 _Unwind_Action actions,

 uint64 exceptionClass,

 struct _Unwind_Exception *exceptionObject,

 struct _Unwind_Context *context);

The personality routine is the function in the C++ (or other language) runtime library which serves
as an interface between the system unwind library and language-specific exception handling
semantics. It is specific to the code fragment described by an unwind info block, and it is always
referenced via the pointer in the unwind info block, and hence it has no psABI-specified name.

6.1.6.1 Parameters

The personality routine parameters are as follows:

version Version number of the unwinding runtime, used to detect a mis-match
between the unwinder conventions and the personality routine, or to
provide backward compatibility. For the conventions described in this
document, version will be 1.

actions Indicates what processing the personality routine is expected to perform,
as a bit mask. The possible actions are described below.

exceptionClass An 8-byte identifier specifying the type of the thrown exception. By
convention, the high 4 bytes indicate the vendor (for instance HP\0\0),
and the low 4 bytes indicate the language. For the C++ ABI described in
this document, the low four bytes are C++\0.
Intel® Itanium™ Processor-specific Application Binary Interface (ABI) 6-9

Libraries
Note: This is not a null-terminated string. Some implementations may use no null bytes.

exceptionObject The pointer to a memory location recording the necessary information
for processing the exception according to the semantics of a given
language (see the Exception Header section above).

context Unwinder state information for use by the personality routine. This is an
opaque handle used by the personality routine in particular to access the
frame’s registers (see the Unwind Context section above).

return value The return value from the personality routine indicates how further
unwind should happen, as well as possible error conditions. See the
following section.

6.1.6.2 Personality Routine Actions

The actions argument to the personality routine is a bitwise OR of one or more of the following
constants:
 typedef int _Unwind_Action;

 const _Unwind_Action _UA_SEARCH_PHASE = 1;

 const _Unwind_Action _UA_CLEANUP_PHASE = 2;

 const _Unwind_Action _UA_HANDLER_FRAME = 4;

 const _Unwind_Action _UA_FORCE_UNWIND = 8;

_UA_SEARCH_PHASE Indicates that the personality routine should check if the current frame
contains a handler, and if so return _URC_HANDLER_FOUND, or
otherwise return _URC_CONTINUE_UNWIND. _UA_SEARCH_PHASE
cannot be set at the same time as _UA_CLEANUP_PHASE.

_UA_CLEANUP_PHASE Indicates that the personality routine should perform cleanup for the
current frame. The personality routine can perform this cleanup itself, by
calling nested procedures, and return _URC_CONTINUE_UNWIND.
Alternatively, it can setup the registers (including the ip) for transferring
control to a “landing pad”, and return _URC_INSTALL_CONTEXT.

_UA_HANDLER_FRAMEDuring phase 2, indicates to the personality routine that the current
frame is the one which was flagged as the handler frame during phase 1.
The personality routine is not allowed to change its mind between phase
1 and phase 2, i.e. it must handle the exception in this frame in phase 2.

_UA_FORCE_UNWIND During phase 2, indicates that no language is allowed to “catch” the
exception. This flag is set while unwinding the stack for longjmp or
during thread cancellation. User-defined code in a catch clause may still
be executed, but the catch clause must resume unwinding with a call to
_Unwind_Resume when finished.

6.1.6.3 Transferring Control to a Landing Pad

If the personality routine determines that it should transfer control to a landing pad (in phase 2), it
may set up registers (including ip) with suitable values for entering the landing pad (e.g. with
landing pad parameters), by calling the context management routines above. It then returns
_URC_INSTALL_CONTEXT.

Prior to executing code in the landing pad, the unwind library restores registers not altered by the
personality routine, using the context record, to their state in that frame before the call that threw
the exception, as follows. All registers specified as callee-saved by the base ABI are restored, as
well as scratch registers r15, r16, r17 and r18 (see below). Except for those exceptions, scratch
(or caller-saved) registers are not preserved, and their contents are undefined on transfer. The
6-10 Intel® Itanium™ Processor-specific Application Binary Interface (ABI)

Libraries
accessibility of registers in the frame will be restored to that at the point of call, i.e. the same logical
registers will be accessible, but their mappings to physical registers may change. Further, the state
of stacked registers beyond the current frame is unspecified, i.e. they may be either in physical
registers or on the register stack.

The landing pad can either resume normal execution (as, for instance, at the end of a C++ catch), or
resume unwinding by calling _Unwind_Resume and passing it the exceptionObject
argument received by the personality routine. _Unwind_Resume will never return.

_Unwind_Resume should be called if and only if the personality routine did not return
_Unwind_HANDLER_FOUND during phase 1. As a result, the unwinder can allocate resources
(for instance memory) and keep track of them in the exception object reserved words. It should
then free these resources before transferring control to the last (handler) landing pad. It does not
need to free the resources before entering non-handler landing-pads, since _Unwind_Resume
will ultimately be called.

The landing pad may receive arguments from the runtime, typically passed in registers set using
_Unwind_SetGR by the personality routine. For a landing pad that can call to
_Unwind_Resume, one argument must be the exceptionObject pointer, which must be
preserved to be passed to _Unwind_Resume.

The landing pad may receive other arguments, for instance a switch value indicating the type of the
exception. Four scratch registers are reserved for this use (r15, r16, r17 and r18.)

6.1.6.4 Rules for Correct Inter-language Operation

The following rules must be observed for correct operation between languages and/or runtimes
from different vendors:

An exception which has an unknown class must not be altered by the personality routine. The
semantics of foreign exception processing depend on the language of the stack frame being
unwound. This covers in particular how exceptions from a foreign language are mapped to the
native language in that frame.

If a runtime resumes normal execution, and the caught exception was created by another runtime, it
should call _Unwind_DeleteException. This is true even if it understands the exception
object format (such as would be the case between different C++ runtimes).

A runtime is not allowed to catch an exception if the _UA_FORCE_UNWIND flag was passed to the
personality routine.

Note: Example: Foreign exceptions in C++. In C++, foreign exceptions can be caught by a
catch(...) statement. They can also be caught as if they were of a __foreign_exception
class, defined in <exception>. The __foreign_exception may have subclasses, such as
__java_exception and __ada_exception, if the runtime is capable of identifying some
of the foreign languages.

The behavior is undefined in the following cases:

• A __foreign_exception catch argument is accessed in any way (including taking its
address).

• A __foreign_exception is active at the same time as another exception (either there is a
nested exception while catching the foreign exception, or the foreign exception was itself
nested).
Intel® Itanium™ Processor-specific Application Binary Interface (ABI) 6-11

Libraries
• uncaught_exception(), set_terminate(), set_unexpected(), terminate(),
or unexpected() is called at a time a foreign exception exists (for example, calling
set_terminate() during unwinding of a foreign exception).

All these cases might involve accessing C++ specific content of the thrown exception, for instance
to chain active exceptions.

Otherwise, a catch block catching a foreign exception is allowed:

• to resume normal execution, thereby stopping propagation of the foreign exception and
deleting it, or

• to rethrow the foreign exception. In that case, the original exception object must be unaltered
by the C++ runtime.

A catch-all block may be executed during forced unwinding. For instance, a longjmp may
execute code in a catch(...) during stack unwinding. However, if this happens, unwinding
will proceed at the end of the catch-all block, whether or not there is an explicit rethrow.

Setting the low 4 bytes of exception class to C++\0 is reserved for use by C++ runtimes compatible
with the common C++ ABI.
6-12 Intel® Itanium™ Processor-specific Application Binary Interface (ABI)

Miscellaneous 7

7.1 Introduction

This chapter contains miscellaneous subjects which are agreed to need representation somewhere,
but are not strictly issues for a binary standard. The intent here is to provide this chapter as a “place
holder” rather than as the intended final destination for these issues.

7.2 Development Environment

To facilitate portability of source code, a compilation environment that is capable of producing
ABI conforming objects will provide the following information available at compilation time.

7.2.1 Pre-defined Preprocessor Symbols

__ia64 Describes the target architecture. The initial value is 1. This value should
track future backward-compatible architectural extensions in the
EF_IA_64_ARCH ELF header flags field.

_ILP32 32-bit ABI data model: int, long, and pointer are 32 bits, long long is 64
bits. Value if defined is 1.

_LP64 64-bit ABI data model: long, long long, and pointer are 64 bits, int is 32
bits. Value if defined is 1.

7.2.2 Pre-defined Preprocessor Assertions

 A compilation environment that is capable of producing ABI conforming objects will implement
the C preprocessor assertion feature. This allows a preprocessor assertion of the form:

#assert predicate[(token-sequence)]

This assertion associates token-sequence with predicate in the assertion name space. All
tokens involved are preprocessor tokens: the predicate must be an identifier token, and the
token-sequence is an arbitrary sequence of tokens. The (token-sequence) may be omitted
from the #assert, in which case it associates no token sequence with predicate, but may be
useful to place predicate in the assertion name space in order to avert possible warning
messages for testing unrecognized predicates.

Predicate assertion associations may then be tested with:

#if #predicate(token-sequence)

This assertion evaluates true if token-sequence is associated with predicate and false
otherwise. The token-sequence must be non-empty in a predicate test.

Multiple token sequences may be associated with a single predicate identifier by using multiple
assertions. Each association may be tested independently.
Intel® Itanium™ Processor-specific Application Binary Interface (ABI) 7-1

Miscellaneous
In addition to #assert definition of assertion associations, compilers generally support the
equivalent command-line option:

-Apredicate(token-sequence)

A compilation environment capable of producing ABI-conforming objects will provide the
following pre-defined preprocessor assertions:

machine(ia64) Target architecture.

model(lp64) 64-bit ABI data model: long, long long, and pointer are 64 bits, int is 32
bits.

model(ilp32) 32-bit ABI data model: int, long, and pointer are 32 bits, long long is 64
bits.

endian(little) Little-endian data model.

endian(big) Big-endian data model.

7.2.3 Compiler Pragmas

7.2.3.1 Controlling Section Attributes

A compilation environment that is capable of producing ABI conforming objects will support a
pragma to control section attribute specification for variables:

// define a symbol in a section with “short” or “long” attributes.
#pragma alloc_section(symbol_name, “attribute-list”)

“attribute-list” is a comma-separated list of attributes, the defined values are:

“short”
“long”

Examples:
#pragma alloc_section(var1, “short”)
int var1 = 20;

#pragma alloc_section(var2, “short”)
extern int var2;

It is left to the compiler to decide whether the symbol should go to a “data” or “bss” or “rdata”
section.

7.2.3.2 Pragma for Control Flow Properties of Procedure Calls

/usr/include/setjmp.h:#pragma unknown_control_flow(setjmp)

/usr/include/setjmp.h:#pragma unknown_control_flow(_setjmp)

/usr/include/setjmp.h:#pragma unknown_control_flow(sigsetjmp)

/usr/include/ucontext.h:#pragma unknown_control_flow(getcontext)

/usr/include/unistd.h:#pragma unknown_control_flow(vfork)

/usr/include/sys/systm.h:#pragma unknown_control_flow(setjmp)

/usr/include/sys/systm.h:#pragma unknown_control_flow(on_fault)

/usr/include/sys/systm.h:#pragma unknown_control_flow(on_data_trap)
7-2 Intel® Itanium™ Processor-specific Application Binary Interface (ABI)

Miscellaneous
Pragma unkown_control_flow specifies a list of routines that violate the usual control flow
properties of procedure calls. For example, the statement following a call to setjmp() can be
reached from an arbitrary call to any other routine. The statement is reached by a call to
longjmp(). Since such routines render standard flow graph analysis invalid, routines that call
them cannot be safely optimized; hence, they are compiled with the optimizer disabled.

7.3 ILP32 ABI

Note: The following section is included for comment. There is not agreement that either an ILP32 ABI is
mandatory nor that the mechanisms described in this section are the only way to implement an
ILP32 ABI. Some vendors are known not to intend to implement an ILP32 ABI at all and at least
one plans a different implementation. Thus this section presents guidelines for a possible
implementation which would have some commonality but ILP32 binaries are not ABI conforming.

This description along with the Conventions document describes the software conventions needed
to support Itanium architecture programs which will run in 32 bit address space. The Itanium
architecture is composed of today’s 32-bit Intel Architecture (IA-32) along with the 64-bit
Instruction Set Architecture (ISA). For UNIX, the base IA-32 software conventions are contained
in the i386™ Processor Application Binary Interface. These 32 bit conventions here describe a
data model which is completely compatible with the appropriate IA-32 conventions on UNIX.

The 64-bit runtime architecture along with the 32-bit Conventions defines most of the conventions
necessary to compile, link, and execute a program on an operating system that supports these
conventions. Its purpose is to ensure that object modules produced by different compilers can be
linked together into a single application, and to specify the interfaces between compilers and linker,
and between linker and operating system.

7.3.1 Objectives of the 32-bit Little-endian Runtime Architecture

This document defines the software interfaces needed to ensure that software for Itanium
architecture will operate correctly together. The intent is to define as small a set of interface
specifications as possible, while still meeting the following goals:

• High performance

• Ease of porting, IA-32 data compatibility

• Commonality with Itanium architecture 64-bit software conventions

• Ease of implementation and use

We would like to provide complete enough interfaces between the different software products that
they can be provided by different ISVs and still work together. These include compilers, linkers,
applications, and dynamic link libraries. The goal is to have one convention, so software will be
portable on Itanium architecture UNIX systems.

7.3.2 Changes from the 64-bit Software Conventions

In 32-bit Conventions the data representations are identical to the existing IA-32 conventions.

In other words all sizes and alignments of data items match existing IA-32 conventions. Integer,
pointer and long types are each 4 bytes in size in ILP32 conventions. ILP32 function descriptors
are 2 4-byte words. Global offset table entries are 4 bytes each as follows:

sizeof(long) = sizeof(int) = sizeof((void *))= 4.
Intel® Itanium™ Processor-specific Application Binary Interface (ABI) 7-3

Miscellaneous
Right shift would sign extend integer data types.

Long long, doubles and double-extended are aligned on 0 mod 4 boundaries.

Alignment for the members of an aggregate match existing IA-32 conventions.

7.3.3 Addressing and Protection

The features of the processor architecture that are described in the Addressing and Protection
section of the Intel® IA-64 Architecture Software Developer’s Manual are intended for the
exclusive use of the operating system software, with the following exceptions:

• An application may use the zxt4 instructions to convert a 32-bit virtual address to a 64-bit
virtual address.

• Refer to Chapter 2, Section 2.4 Addressing and protection of Conventions, for other
exceptions.

7.3.4 Data Allocation

7.3.4.1 Global Variables

Common blocks, dynamically allocated regions (such as malloc, etc.), and external data items
greater than 4 bytes must all be aligned at least on a 4-byte boundary. Smaller data items must be
aligned on the next larger power-of-two boundary.

7.3.5 Local Memory Stack Variables

Stack frames must always be aligned on a 16-byte boundary. That is, the stack pointer register must
always be aligned on a 16-byte boundary.

7.3.6 Parameter Passing

Parameter passing and allocation of parameter slots are done as described in Chapter 8, Section 8.5
of Conventions. Each slot size remains 64 bits in ILP32 conventions to match the 64 bit calling
conventions for Itanium architecture.

7.4 Synchronization Primitives

The intrinsics described here provide a variety of primitive synchronization operations. Besides
performing the particular synchronization operation, each of these intrinsics has two key
properties:

• The function performed is guaranteed to be atomic (typically achieved by implementing the
operation using a sequence of load-linked/store-conditional instructions in a loop on MIPS).

• Associated with each instrinsic are certain memory barrier properties that restrict the
movement of memory references to visible data across the intrinsic operation (by either the
compiler or the processor).
7-4 Intel® Itanium™ Processor-specific Application Binary Interface (ABI)

Miscellaneous
A visible memory reference is a reference to a data object potentially accessible by another thread
executing in the same shared address space. A visible data object may be one of the following:

• C/C++ global data

• Fortran COMMON data

• Data declared extern

• Volatile data

• Static data (either file-scope or function-scope)

• Data accessible via function parameters

• Automatic data (local-scope) that has had its address taken and assigned to some object which
is visible (recursively)

The memory barrier semantics of an intrinsic may be one of the following three types:

acquire barrier Disallows the movement of memory references to visible data from after
the intrinsic (in program order) to before the intrinsic (this behavior is
desirable at lock-acquire operations, hence the name).

release barrier Disallows the movement of memory references to visible data from
before the intrinsic (in program order) to after the intrinsic (this behavior
is desirable at lock-release operations, hence the name).

full barrier disallows the movement of memory references to visible data past the
intrinsic (in either direction), and is thus both an acquire and a release
barrier. A barrier only restricts the movement of memory references to
visible data across the intrinsic operation: between synchronization
operations (or in their absence), memory references to visible data may
be freely reordered subject to the usual data-dependence constraints.

Caution: Conditional execution of a synchronization intrinsic (such as within an if or a while statement)
does not prevent the movement of memory references to visible data past the overall if or while
construct.

7.4.1 Atomic Fetch-and-op Operations

"type __sync_fetch_and_add (type* ptr, type value, ...)"
"type __sync_fetch_and_sub (type* ptr, type value, ...)"
"type __sync_fetch_and_or (type* ptr, type value, ...)"
"type __sync_fetch_and_and (type* ptr, type value, ...)"
"type __sync_fetch_and_xor (type* ptr, type value, ...)"
"type __sync_fetch_and_nand(type* ptr, type value, ...)"

Where type may be one of int, long, long long, unsigned int, unsigned long, or unsigned long long.
The ellipsis (...) refers to an optional list of variables protected by the memory barrier.

Behavior:

• Atomically performs the specified operation with the given value on *ptr, and returns the old
value of *ptr, as in the following example:

{ tmp = *ptr; *ptr <op>= value; return tmp; }

• Full barrier.
Intel® Itanium™ Processor-specific Application Binary Interface (ABI) 7-5

Miscellaneous
7.4.2 Atomic Op-and-fetch Operations

"type __sync_add_and_fetch (type* ptr, type value, ...)"
"type __sync_sub_and_fetch (type* ptr, type value, ...)"
"type __sync_or_and_fetch (type* ptr, type value, ...)"
"type __sync_and_and_fetch (type* ptr, type value, ...)"
"type __sync_xor_and_fetch (type* ptr, type value, ...)"
"type __sync_nand_and_fetch(type* ptr, type value, ...)"

Where type may be one of int, long, long long, unsigned int, unsigned long, or unsigned long long.
The ellipsis (...) refers to an optional list of variables protected by the memory barrier.

Behavior:

• Atomically performs the specified operation with the given value on *ptr, and returns the new
value of *ptr. (i.e.)

{ *ptr <op>= value; return *ptr; }

• Full barrier.

7.4.3 Atomic Compare-and-swap Operation

"int __sync_bool_compare_and_swap (type* ptr, type oldvalue, type newvalue,
...)"
"type __sync_val_compare_and_swap (type* ptr, type oldvalue, type newvalue,
...)"

Where type may be one of int, long, long long, unsigned int, unsigned long, unsigned long long.
The ellipsis (...) refers to an optional list of variables protected by the memory barrier.

Behavior:

• Atomically do the following: compare *ptr to oldvalue. If equal, store the new value. The
_sync_bool_compare_and_swap version returns 1 if successful, or 0 if *ptr does not match
oldvalue. I.e., the __sync_bool_compare_and_swap version does the following:

if (*ptr != oldvalue) return 0;
else {

*ptr = newvalue;
return 1;

}

The __sync_val_compare_and_swap version returns *ptr. (Note that doing this atomically
requires looping on an architecture with an LL/SC implementation like MIPS.)

• Full barrier.

7.4.4 Atomic Synchronize Operation

"__sync_synchronize (...)"

The ellipsis (...) refers to an optional list of variables protected by the memory barrier.

Behavior:

• Full barrier
7-6 Intel® Itanium™ Processor-specific Application Binary Interface (ABI)

Miscellaneous
7.4.5 Atomic Lock-test-and-set Operation

"type __sync_lock_test_and_set (type* ptr, type value, ...)"

Where type may be one of int, long, long long, unsigned int, unsigned long, or unsigned long long.
The ellipsis (...) refers to an optional list of variables protected by the memory barrier.

Behavior:

• Atomically store the supplied value in *ptr and return the old value of *ptr. (i.e.)
{ tmp = *ptr; *ptr = value; return tmp; }

• Acquire barrier.

7.4.6 Atomic Lock_release Operation

"void __sync_lock_release (type* ptr, ...)"

Where type may be one of int, long, long long, unsigned int, unsigned long, or unsigned long long.
The ellipsis (...) refers to an optional list of variables protected by the memory barrier.

Behavior:

• Set *ptr to 0. (i.e.) { *ptr = 0 }

• Release barrier.

7.5 Thread-Local Storage

This section describes the use and implementation of thread-local storage in the Itanium™
Conventions and Runtime Architecture Guide.

The compiler tool chain provides direct support for the declaration of thread-local data (also
referred to as thread-specific or thread-private data). The programmer may declare variables to be
thread local, and the compiler will automatically arrange for those variables to be allocated on a
per-thread basis.

The built-in support for this feature serves three purposes:

• It provides a foundation upon which the POSIX interfaces for allocating thread-specific data
are built.

• It offers a more convenient and more efficient mechanism for direct use by applications and
libraries.

• It allows compilers to allocate thread-local storage as necessary when performing loop-
parallelizing optimizations.

7.5.1 C/C++ Programming Interface

A programmer declares a variable to be thread local using the __thread keyword, as in the
following examples:

__thread int i;
__thread char *p;
__thread struct state s;
Intel® Itanium™ Processor-specific Application Binary Interface (ABI) 7-7

Miscellaneous
During loop optimizations, the compiler may choose to create thread-local temporaries as needed.

Applicability. The __thread keyword may be applied to any global, file-scoped static, or
function-scoped static variable (it has no effect on automatic variables, which are always thread-
local).

Initialization. In C++, a thread-local variable may not be initialized if the initialization would
require a static constructor. Otherwise, a thread-local variable may be initialized to any value that
would be legal for an ordinary static variable.

No variable, thread-local or otherwise, may be initialized to the address of a thread-local variable.

Binding. Thread-Local variables may be declared and referenced externally, and they are subject
to the same pre-emption rules as normal symbols.

Tentative definitions. In ANSI C and C++, a thread-local variable declared without an initializer
and without the extern keyword is treated as a definition. In K&R C, the treatment is unspecified
(i.e., it may be treated by the implementation as a definition or a tentative definition).

Dynamic loading restrictions. A shared library, x, that contains thread-local storage may be
loaded dynamically, via dlopen(), provided that every translation unit containing a reference to a
thread-local variable defined in x has been compiled with the dynamic thread-local storage model.

While the static thread-local storage model generates faster code, code compiled with this model
cannot reference thread-local variables in dynamically-loaded libraries. The dynamic thread-local
storage model is able to reference all thread-local storage. Both thread-local storage models are
described in this document.

Address-of operator. The address-of operator (&), when applied to a thread-local variable, is
evaluated at run-time, and returns the address of the current thread’s instance of that variable. The
address obtained by this operator may be used freely by any thread in the process as long as the
thread that evaluated the address remains in existence. When a thread terminates, any pointers to
thread-local variables in that thread become invalid.

When the dlsym() is used to obtain the address of a thread-local variable, the address returned will
be the address of the instance of that variable in the thread that called dlsym().

7.5.2 Compile-time Allocation of Thread-Local Storage

The compiler allocates thread-local storage based on how it is declared:

• If a thread-local variable is not initialized (or is initialized to zero), it is allocated in the .tbss
section.

• If a thread-local variable is initialized to a non-zero value, it is allocated in the .tdata section,
and the initialization value is placed into the section’s initialization image. The initialization
may require relocation.

• If a thread-local variable is a tentative definition, it is declared as a “TLS Common” symbol,
using the SHN_TLS_COMMON section index in the symbol table entry.

The section attributes for .tbss and .tdata are listed in Table 7-1.
7-8 Intel® Itanium™ Processor-specific Application Binary Interface (ABI)

Miscellaneous
Thread-Local storage symbols must have the symbol type STT_TLS (6). In relocatable object files,
the st_value field of an STT_TLS symbol contains a section-relative offset for defined symbols, or
zero for undefined symbols.

7.5.3 Linker Treatment of Thread-Local Storage Sections

The linker processes “TLS Common” symbols as it processes ordinary common symbols, except
that the resulting allocations are made in the .tbss section.

The linker collects the .tdata sections (i.e., all sections of type SHT_PROGBITS with the
SHF_TLS flag set) into a combined .tdata section that may be allocated in any program segment,
except that it must be in a writable segment if it contains any dynamic relocations.

The linker collects the .tbss sections (i.e., all sections of type SHT_NOBITS with the SHF_TLS
flag set) into a combined .tbss section that is allocated immediately following the .tdata section,
subject to padding for proper alignment.

The combined .tdata and .tbss sections together form a TLS template that is used to allocate thread-
local storage whenever a new thread is created. The initialized portion of this template is called the
TLS initialization image. All relocations generated as a result of initialized thread-local variables
are applied to this template, so that the relocated values can be used when a new thread requires the
initial values.

All symbols defined in a thread-local storage section are assigned offsets relative to the beginning
of the TLS template. The actual virtual address associated with these symbols is irrelevant, since
the address refers only to the template, and not to the per-thread copy of each data item.

In executable and shared object files, the st_value field of an STT_TLS symbol contains the
assigned offset for defined symbols, or zero for undefined symbols.

Several relocations are defined to support access to thread-local storage, and the linker must
process these as described in “Code Sequences for Accessing Thread-Local Variables,” below.
Symbols of type STT_TLS may be referenced by only these TLS relocations, and TLS relocations
may reference only symbols of type STT_TLS.

Table 7-1. Section Table Entries for .tbss and .tdata

sh_name tbss tdata

sh_type SHT_NOBITS SHT_PROGBITS

sh_flags SHF_ALLOC + SHF_WRITE + SHF_TLS SHF_ALLOC + SHF_WRITE + SHF_TLS

sh_addr virtual address of section virtual address of section

sh_offset 0 file offset of initialization image

sh_size size of section size of section

sh_link SHN_UNDEF SHN_UNDEF

sh_info 0 0

sh_addralign alignment of section alignment of section

sh_entsize 0 0
Intel® Itanium™ Processor-specific Application Binary Interface (ABI) 7-9

Miscellaneous
Although the .tbss section must be allocated following the .tdata section, so that symbols in .tbss
receive proper template-relative offsets, it does not need to be physically allocated in the output
file—that is, the address space that would be occupied by the uninitialized portion of the thread-
local storage template may be overlayed by other data.

In the output file, the linker creates a new program header table entry to describe the TLS template;
the fields of this entry are described in Table 7-2. The memory described by this program header
table entry must be part of a loadable segment described by a PT_LOAD entry.

The flag DF_STATIC_TLS (0x10) in the DT_FLAGS dynamic table entry is used to indicate that
an executable or shared object file contains code using the static TLS model. The linker must set
this flag when the static TLS model is used so that the dynamic loader can easily reject attempts to
load such a file dynamically.

7.5.4 Runtime Allocation of Thread-Local Storage

Thread-Local storage must be created at three occasions during the lifetime of a program:

• At program startup.

• When a new thread is created.

• When a thread references a TLS block for the first time after a new library is loaded.

Figure 7-1 contains an illustration of the layout of the data structures described in this section.

Table 7-2. Program Header Table Entry for Thread-Local Storage

Field Value

p_type PT_TLS (7)

p_offset File offset of the TLS initialization image

p_vaddr Virtual memory address of the TLS initialization image

p_paddr Reserved

p_filesz Size of the TLS initialization image

p_memsz Total size of the TLS template

p_flags PF_R

p_align Alignment of the TLS template
7-10 Intel® Itanium™ Processor-specific Application Binary Interface (ABI)

Miscellaneous
Program startup. At program startup, the runtime system creates thread-local storage for the
main thread.

First, the dynamic loader logically combines the TLS templates for all load modules in the startup
set (including the a.out itself) into a single static template. Each load module’s TLS template is
assigned an offset within the combined template, tlsoffsetm , as follows:

• tlsoffset1 = round(16, align1)

• tlsoffsetm+1 = round(tlsoffsetm + tlssizem , alignm+1)

where tlssizem and alignm are the size of and the required alignment boundary, respectively, for the
allocation template for load module m (1 ≤ m ≤ M, where M is the total number of load modules).
The round(offset, align) function returns offset rounded up to the next multiple of align.

The first 16 bytes of the static allocation template are used by the thread library as a Thread Control
Block (TCB). The doubleword at offset 0 is used as a pointer to the dynamic thread vector, dtvt ,
described below under “Thread creation.” The remaining 8 bytes are reserved for internal use by
the thread library.

The dynamic loader also computes the total startup thread-local storage allocation size, tlssizeS
(equal to tlsoffsetM + tlssizeM).

The dynamic loader then constructs a linked list of initialization records. Each record in this list
describes the TLS initialization image for one load module, and contains the following four fields:

• Pointer to the TLS initialization image.

• Size of the TLS initialization image.

• The tlsoffsetm for the load module.

• A flag indicating whether the load module uses the static TLS model.

The thread library allocates storage for the initial thread, initializes the storage, and creates a
dynamic thread-local storage vector for the initial thread, as described under “Thread creation,”
below.

Figure 7-1. Thread-Local Storage Data Structure Layout

tpt
tlsoffset1 tlsoffset2 tlsoffset3

t

dtvt,1 dtvt,2 dtvt,3 dtvt,4 dtvt,5

TLS Blocks for
Dynamically-loaded modules

TCB

gent
Intel® Itanium™ Processor-specific Application Binary Interface (ABI) 7-11

Miscellaneous
Thread creation. For the initial thread, and when a new thread is created, the thread library
allocates a new thread-local storage block for each load module in the startup set. Depending on the
implementation, it may allocate blocks separately or as a single contiguous block of length tlssizeT,
which is the current total of the sizes of the TLS templates of all load modules (i.e, tlssizeS plus
tlssizem for each dynamically-loaded module), plus any padding required for alignment between
TLS templates.

Each thread t has an associated thread pointer tpt , which points to the thread’s TCB. The thread
pointer register, tp (GR 13), always contains the value of tpt for the currently running thread.

The thread library then creates a vector of pointers, dtvt , for the current thread t. The first element
of each vector contains a generation number gent, which is used to determine when the vector
needs to be extended. The use of this field is described under “Deferred allocation of TLS blocks,”
below.

Each remaining element in the vector, dtvt,m , is a pointer to the block reserved for the thread-local
storage belonging to load module m .

For dynamically-loaded modules, the thread library defers the allocation of thread-local storage
blocks until an actual reference is made from the new thread. All references to TLS defined in a
dynamically-loaded module must use the dynamic TLS model. For blocks whose allocation has
been deferred, the pointer dtvt,m is set to an implementation-defined special value.

Implementation Note: The dynamic loader may, if it so chooses, group the TLS templates for the
startup set of load modules such that they share a single element in the vector, dtvt,1. This must not
affect the offset calculations described above or the creation of the list of initialization records. For
the following sections, however, the value of M, the total number of load modules, would start with
the value 1.

The thread library then copies the initialization images to the corresponding locations within the
new block of storage.

Dynamic loading. When a new library that contains thread-local storage is loaded, the dynamic
loader extends the list of initialization records to include the new library’s initialization template.
The new load module is given an index m = M + 1, and the counter M is incremented by one. The
allocation of new TLS blocks, however, is deferred until they are actually referenced.

Dynamic unloading. When a library that contains thread-local storage is unloaded, the
implementation may choose to free the TLS blocks used for that library, or it may keep them
allocated for reuse. The implementation must ensure that memory leaks do not occur as the result
of repeated loading and unloading of the same library.

Deferred allocation of TLS blocks. In the dynamic TLS model, when a thread t needs to access
a TLS block for load module m, the code must update the vector dtvt and perform the initial
allocation of the TLS block, if necessary. The thread library provides the following interface,
which is part of the base ABI:

extern void *__tls_get_addr(size_t m, size_t offset);

This routine first checks the per-thread generation counter, gent, to determine whether the vector
needs to be updated. If the vector dtvt is out of date, the routine updates the vector, possibly
reallocating it to make room for more entries. The routine then checks to see if the TLS block
corresponding to dtvt,m has been allocated. If it has not been allocated, the routine allocates and
initializes the block, using the information in the list of initialization records provided by the
dynamic loader, and sets the pointer dtvt,m to point to the newly-allocated block. The routine then
returns a pointer to the given offset within the block.
7-12 Intel® Itanium™ Processor-specific Application Binary Interface (ABI)

Miscellaneous
The methods used to determine whether the vector is out of date, and whether a particular TLS
block has been allocated are implementation dependent.

7.5.5 Code Sequences for Accessing Thread-Local Variables

The compiler generates code using either the static thread-local storage model, or the dynamic
thread-local storage model, depending on a compile-time switch.

Static thread-local storage model. In the static thread-local storage model, the tp-relative offset
for a given variable x (i.e., its offset relative to the beginning of the TCB), is stored in a linkage
table entry for x. The generated code to access x obtains the offset from the linkage table entry, adds
this offset to the value of tp, and uses the resulting virtual address to load or store the variable. An
example code sequence that forms the address of a thread-local variable x is shown in Example 1.

The @ltoff(@tprel(x)) operator translates to the R_IA_64_LTOFF_TPREL22 relocation, which
requests the linker to allocate a linkage table entry to hold the tp-relative offset for the variable x.
The linker processes this relocation by substituting the gp-relative offset for the new linkage table
entry.

The tp-relative offset for x is given by tlsoffsetm , where m is the load module containing the
definition of x, plus the symbol value of x, which is its offset relative to the beginning of the load
module’s allocation template. Since tlsoffsetm is not calculated until load time, the linker attaches
an R_IA_64_TPREL64MSB/LSB dynamic relocation to the linkage table entry.

Static model with linker-assigned offsets. For references to TLS known to be in the main
program (e.g., when building a statically-bound program, or when building a main program and the
referenced symbol is protected), the linker can calculate the tp-relative offsets statically, without
the need for dynamic relocations, and the extra reference to the linkage table. Example 2 shows the
code that can be generated for this case.

The first instruction of this sequence can be scheduled early in the code, and the copy of tp in
register r2 can be used by several thread-local storage references.

The @tprel(x) operator translates to the R_IA_64_TPREL22 relocation, which requests the linker
to relocate the instruction with the static tp-relative offset for the variable x.

A compiler may support compilation models where an assertion has been made that the tp-relative
offset is smaller than 213, or larger than 221, allowing the use of the short add instruction, or
requiring the use of the move long immediate instruction. The R_IA_64_TPREL14 and
R_IA_64_TPREL64I relocations are also provided to support these instructions.

Example 1. Static Thread-Local Storage Model

addl t1 = @ltoff(@tprel(x)), gp// find linkage tbl entry
;;

ld8 t2 = [t1] // load tp-relative offset
;;

add loc0 = t2, tp // form address of x

Example 2. Static Model with Linker-assigned Offsets

mov r2 = tp // put tp where addl
;; // use it

addl loc0 = @tprel(x), r2 // form address of x
Intel® Itanium™ Processor-specific Application Binary Interface (ABI) 7-13

Miscellaneous
Dynamic thread-local storage model. In the dynamic thread-local storage model, a variable x,
defined in load module m, is referenced by obtaining the pointer dtvt,m for the current thread t, and
adding to this pointer the dtv-relative offset for x. Because the referenced TLS block may not have
been allocated yet, the code must perform runtime checks described in “Deferred allocation of TLS
blocks,” above. An example code sequence that forms the address of a thread-local variable x,
using the __tls_get_addr interface, is shown in Example 3.

The @ltoff(@dtpmod(x)) operator translates to the R_IA_64_LTOFF_DTPMOD22 relocation,
which requests the linker to allocate a linkage table entry to hold the load module index m for the
variable x. The linker processes this relocation by substituting the gp-relative offset for the new
linkage table entry. Since the load module index m is not calculated until load time, the linker
attaches an R_IA_64_DTPMOD64MSB/LSB dynamic relocation to the linkage table entry.

The @ltoff(@dtprel(x)) operator translates to the R_IA_64_LTOFF_DTPREL22 relocation, which
requests the linker to allocate a linkage table entry to hold the dtv-relative offset for the variable x.
The linker processes this relocation by substituting the gp-relative offset for the new linkage table
entry. The linker attaches an R_IA_64_DTPREL64MSB/LSB dynamic relocation to the linkage
table entry.

Referencing protected symbols in the dynamic model. If a reference is made to a hidden or
protected thread-local symbol using the dynamic model, the linker can calculate a static dtv-
relative offset, saving a reference to the linkage table. An example code sequence that forms the
address of a protected symbol x is shown in Example 4.

The @dtprel(x) operator translates to the R_IA_64_DTPREL22 relocation, which requests the
linker to relocate the instruction with the static dtv-relative offset for the variable x.

When a procedure references more than one protected symbol, the compiler should obtain the base
address of the TLS block once, then use that base address to calculate the addresses of each symbol
without a separate library call. An example code sequence that forms the addresses of two
protected symbols x and y is shown in Example 5.

Example 3. Dynamic Thread-Local Storage Model

mov loc0 = gp // save gp (if necessary)
addl t1 = @ltoff(@dtpmod(x)), gp// find LT entry 1
addl t2 = @ltoff(@dtprel(x)), gp// find LT entry 2
;;

ld8 out0 = [t1] // load value of m
ld8 out1 = [t2] // load dtv-rel. offset
br.callrp = __tls_get_addr // compute addr. of x
;; // address of x in ret0

mov gp = loc0 // restore gp

Example 4. Referencing a Protected Symbol in the Dynamic Mmodel

mov loc0 = gp // save gp (if necessary)
addl t1 = @ltoff(@dtpmod(x)), gp// find LT entry 1
addl out1 = @dtprel(x), r0 // load dtv-rel. offset
;;

ld8 out0 = [t1] // load value of m
br.callrp = __tls_get_addr // compute addr. of x
;; // address of x in ret0

mov gp = loc0 // restore gp
7-14 Intel® Itanium™ Processor-specific Application Binary Interface (ABI)

Miscellaneous
A compiler may support compilation models where an assertion has been made that the dtp-relative
offset is smaller than 213, or larger than 221, allowing the use of the short add instruction, or
requiring the use of the move long immediate instruction. The R_IA_64_DTPREL14 and
R_IA_64_DTPREL64I relocations are also provided to support these instructions.

7.5.6 ELF Relocations for Thread-Local Storage

The new relocations required to support thread-local storage are listed in Table 4-7. All mnemonics
have the prefix “R_IA_64_”.

7.5.7 TLS Variable References

TLS variable can be referenced using the following function:
__tls_get_addr()

Example 5. Referencing Several Protected Symbols in the Dynamic Model

mov loc0 = gp // save gp (if necessary)
addl t1 = @ltoff(@dtpmod(x)), gp// find LT entry 1
mov out1 = r0 // use dtv-rel. offset = 0
;;

ld8 out0 = [t1] // load value of m
br.callrp = __tls_get_addr // compute base addr.
;; // of TLS block in ret0

mov gp = loc0 // restore gp
mov r2 = ret0 // prepare for addl
;;

addl loc1 = @dtprel(x), r2 // form address of x
addl loc2 = @dtprel(y), r2 // form address of y
Intel® Itanium™ Processor-specific Application Binary Interface (ABI) 7-15

Miscellaneous
7-16 Intel® Itanium™ Processor-specific Application Binary Interface (ABI)

Symbols
__FPE_DECDIV .. 3-3
__FPE_DECERR ... 3-3
__FPE_DECOVF ... 3-3
__FPE_INVASC .. 3-3
__FPE_INVDEC .. 3-3
__ILL_BREAK .. 3-3
__ILL_REGNAT ... 3-2
__SEGV_PSTKOVF .. 3-3
32-bit model ... 1-1, 4-1
64-bit model ... 1-1, 4-1

A
ABI-conforming application .. 3-1
ar.fpsr .. 3-4
architecture version .. 4-3
argument count ... 3-6
argument strings ... 3-6

B
backing store .. 3-5, 3-6
big endian ... 4-1
big-endian ... 1-1
binary interface ... 1-1
break instruction ... 3-4, 3-6
bundle address .. 3-5
BUS_ADRALN ... 3-2

C
calling conventions ... 3-6
Conventions .. 3-1

D
data encoding .. 4-1
debugger breakpoints ... 3-6

E
e_flags .. 4-1
e_ident .. 4-1
e_machine ... 4-2
EF_IA_64_ABI64 .. 4-1, 4-2
EF_IA_64_ABSOLUTE .. 4-3
EF_IA_64_ARCH .. 4-3
EF_IA_64_CONS_GP ... 4-3
EF_IA_64_MASKOS .. 4-2
EF_IA_64_NOFUNCDESC_CONS_GP 4-3
EF_IA_64_REDUCEDFP .. 4-3
EI_CLASS .. 4-1
EI_DATA ... 4-1
EI_OSABI .. 4-1
ELF header ... 4-1
ELFCLASS32 .. 4-1

ELFCLASS64 ... 4-1
ELFDATA2LSB ... 4-1
ELFDATA2MSB .. 4-1
exceptions ... 3-2
exec ... 3-6
executable files .. 3-1

F
faulting instruction .. 3-5
faulting memory reference .. 3-5
file class .. 4-1
floating-point status register 3-4, 3-7
floating-point type ... 3-1
FPE_FLTDIV ... 3-3
FPE_FLTINV ... 3-3
FPE_FLTOVF ... 3-3
FPE_FLTRES ... 3-3
FPE_FLTSUB ... 3-3
FPE_FLTUND .. 3-3
FPE_INTDIV .. 3-3
FPE_INTOVF ... 3-3
frame marker ... 3-6
function definition ... 4-3
function descriptor ... 3-4, 4-3
function pointer ... 3-4

G
global pointer .. 4-3
global pointer register .. 3-4, 3-7

H
hardware exception ... 3-2

I
IA-32 instruction set ... 1-1
IEEE Double-Extended floating point 3-1
ILL_ILLOPC .. 3-2
ILL_PRVOPC ... 3-2
ILL_PRVREG ... 3-2
ILP32 .. 1-1, 3-1, 4-1
indirect function calls .. 4-3
integral type .. 3-1
Intel IA-64 Software Conventions 1-1
Itanium architecture .. 1-1
Itanium architecture instruction set 4-1

L
little endian .. 4-1
little-endian ... 1-1
long double .. 3-1
long long ... 3-1
LP64 ... 1-1, 3-1, 4-1
LP64 programming model .. 1-1
Intel® Itanium™ Processor-specific Application Binary Interface (ABI) Index-1

M
main .. 3-6
memory stack .. 3-5

O
Object files .. 3-1
object model compatibility ... 1-1
output argument registers .. 3-4

P
position-independent code .. 3-1
process image .. 3-6
process state .. 3-6
processor identification ... 4-2
Processor Supplement ... 3-1
program state ... 3-6
programming model .. 4-1

R
reduced floating-point model .. 4-3
register stack ... 3-6
register stack frame ... 3-4
relocatable files ... 3-1
relocatable objects ... 4-1
return pointer ... 3-5
return pointer register .. 3-7
RSE backing store pointer registers 3-7

S
saved signal context .. 3-5
scalar data types .. 3-1
section types .. 4-3
SEGV_ACCERR .. 3-2
SEGV_MAPERR ... 3-2, 3-3
sh_type .. 4-3
shared object files ... 3-1
si_addr .. 3-4, 3-5
si_band .. 3-4
si_code .. 3-2
si_imm ... 3-4, 3-5
si_pid ... 3-4
si_signo ... 3-2

si_status .. 3-4
si_uid .. 3-4
SIGBUS .. 3-2, 3-4
SIGCHLD ... 3-4
SIGFPE ... 3-2, 3-4
SIGILL ... 3-2, 3-4
siginfo_t .. 3-5
signal ... 3-2
signal context record ... 3-5
signal context records ... 3-4
signal delivery .. 3-6
signal handler .. 3-4, 3-5
signal info ... 3-4
SIGPOLL .. 3-4
SIGSEGV ... 3-2, 3-4
SIGTRAP .. 3-3, 3-4, 3-5
Single UNIX Specification 1-1, 3-5
stack frame .. 3-5, 3-6
stack pointer register ... 3-6
stack_t ... 3-5
System V ABI ... 1-1, 3-1
System V Application Binary Interface 1-1
System V Interface Definition .. 1-1

T
TRAP_BRKPT ... 3-3

U
ucontext_t ... 3-5
UNIX System V, Release 4 .. 1-1
unwind descriptor ... 3-6
unwind library .. 3-6
unwind table ... 3-6
user stack .. 3-4

X
X/Open Common Application Environment Specification 1-
1

Z
zero-extending .. 4-1
Index-2 Intel® Itanium™ Processor-specific Application Binary Interface (ABI)

	1 Introduction
	1.1 The Intel® Itanium™ Architecture and the System V ABI
	1.2 How to Use the System V ABI for Intel® Itanium™ Processors
	1.3 Evolution of the ABI Specification
	1.4 Additional Documents

	2 Software Installation
	3 Low-level System Information
	3.1 Introduction
	3.2 Machine Interface
	3.2.1 Fundamental Types

	3.3 Operating System Interface
	3.3.1 Exception Interface
	3.3.2 Signal Delivery
	3.3.3 Signal Handler Interface
	3.3.4 Debugging Support
	3.3.5 Process Startup

	4 Object Files
	4.1 ELF Header
	4.1.1 Machine Information

	4.2 Sections
	4.2.1 Section Types
	4.2.2 Section Attribute Flags
	4.2.3 Special Sections
	4.2.4 Architecture Extensions

	4.3 Relocations
	4.3.1 Relocation Types

	5 Program Loading and Dynamic Linking
	5.1 Program Header
	5.2 Program Loading
	5.2.1 Linktime and Runtime Addresses
	5.2.2 Initializations

	5.3 Dynamic Linking
	5.3.1 Dynamic Linker
	5.3.2 Dynamic Section
	5.3.3 Shared Object Dependencies
	5.3.4 Global Offset Table
	5.3.5 Function Addresses
	5.3.6 Procedure Linkage Table
	5.3.7 Initialization and Termination Functions

	6 Libraries
	6.1 Unwind Library Interface
	6.1.1 Exception Handler Framework
	6.1.2 Data Structures
	6.1.3 Throwing an Exception
	6.1.4 Exception Object Management
	6.1.5 Context Management
	6.1.6 Personality Routine

	7 Miscellaneous
	7.1 Introduction
	7.2 Development Environment
	7.2.1 Pre-defined Preprocessor Symbols
	7.2.2 Pre-defined Preprocessor Assertions
	7.2.3 Compiler Pragmas

	7.3 ILP32 ABI
	7.3.1 Objectives of the 32-bit Little-endian Runtime Architecture
	7.3.2 Changes from the 64-bit Software Conventions
	7.3.3 Addressing and Protection
	7.3.4 Data Allocation
	7.3.5 Local Memory Stack Variables
	7.3.6 Parameter Passing

	7.4 Synchronization Primitives
	7.4.1 Atomic Fetch-and-op Operations
	7.4.2 Atomic Op-and-fetch Operations
	7.4.3 Atomic Compare-and-swap Operation
	7.4.4 Atomic Synchronize Operation
	7.4.5 Atomic Lock-test-and-set Operation
	7.4.6 Atomic Lock_release Operation

	7.5 Thread-Local Storage
	7.5.1 C/C++ Programming Interface
	7.5.2 Compile-time Allocation of Thread-Local Storage
	7.5.3 Linker Treatment of Thread-Local Storage Sections
	7.5.4 Runtime Allocation of Thread-Local Storage
	7.5.5 Code Sequences for Accessing Thread-Local Variables
	7.5.6 ELF Relocations for Thread-Local Storage
	7.5.7 TLS Variable References

