
Open Watcom C

Language Reference

Version 1.8

Notice of Copyright
Copyright 2002-2008 the Open Watcom Contributors. Portions Copyright 1984-2002 Sybase, Inc.
and its subsidiaries. All rights reserved.

Any part of this publication may be reproduced, transmitted, or translated in any form or by any means,
electronic, mechanical, manual, optical, or otherwise, without the prior written permission of anyone.

For more information please visit http://www.openwatcom.org/

ii

Preface
This book describes the C programming language as implemented by the Open Watcom C16 and
C32 compilers for 80x86-based processors. Open Watcom C16 and C32 are implementations of ANSI/ISO
9899:1990 Programming Language C. The standard was developed by the ANSI X3J11 Technical
Committee on the C Programming Language. In addition to the full C language standard, the compiler
supports numerous extensions for the 80x86 environment.

This book is intended to be a reference manual and hence a precise description of the C language. It also
attempts to remain readable by ordinary humans. When new concepts are introduced, examples are given
to provide clarity.

Since C is a programming language that is supposed to aid programmers trying to write portable programs,
this book points out those areas of the language that may vary from one system to another. Where possible,
the probable behavior of other C compilers is mentioned.

February, 2008.

Trademarks
IBM, IBM PC, PS/2, PC DOS and OS/2 are registered trademarks of International Business Machines
Corp.

Intel and Pentium are registered trademarks of Intel Corp.

Microsoft and MS DOS are registered trademarks of Microsoft Corp. Windows is a trademark of
Microsoft Corp.

QNX is a registered trademark of QNX Software Systems Ltd.

UNIX is a registered trademark of The Open Group.

WATCOM is a trademark of Sybase, Inc. and its subsidiaries.

iii

iv

Table of Contents
Introduction ... 1

1 Introduction to C ... 3
1.1 History .. 3
1.2 Uses .. 3
1.3 Advantages ... 4
1.4 How to Use This Book ... 5

Language Reference .. 7

2 Notation .. 9

3 Basic Language Elements ... 11
3.1 Character Sets .. 11

3.1.1 Multibyte Characters ... 12
3.2 Keywords ... 12
3.3 Identifiers ... 13
3.4 Comments .. 14

4 Basic Types .. 15
4.1 Declarations of Objects .. 15
4.2 Name Scope ... 17
4.3 Type Specifiers .. 18
4.4 Integer Types .. 19
4.5 Floating-Point Types .. 21
4.6 Enumerated Types .. 22
4.7 Arrays ... 24
4.8 Strings .. 26

5 Constants .. 29
5.1 Integer Constants .. 29
5.2 Floating-Point Constants .. 30
5.3 Character Constants ... 31

5.3.1 Wide Character Constants ... 33
5.4 String Literals ... 34

5.4.1 Wide String Literals ... 35

6 Type Conversion .. 37
6.1 Integral Promotion ... 37
6.2 Signed and Unsigned Integer Conversion .. 37
6.3 Floating-Point to Integer Conversion ... 39
6.4 Integer to Floating-Point Conversion ... 39
6.5 Arithmetic Conversion ... 40
6.6 Default Argument Promotion ... 40

7 Advanced Types ... 41
7.1 Structures ... 41

7.1.1 Bit-fields .. 44
7.2 Unions .. 45
7.3 Pointers ... 46

7.3.1 Special Pointer Types for Open Watcom C16 ... 47

v

Table of Contents
7.3.1.1 The Small and Big Code Models .. 48
7.3.1.2 The Small and Big Data Models ... 48
7.3.1.3 Mixing Memory Models ... 49
7.3.1.4 The _ _far Keyword for Open Watcom C16 ... 49
7.3.1.5 The _ _near Keyword for Open Watcom C16 50
7.3.1.6 The _ _huge Keyword for Open Watcom C16 51

7.3.2 Special Pointer Types for Open Watcom C32 ... 52
7.3.2.1 The _ _far Keyword for Open Watcom C32 ... 52
7.3.2.2 The _ _near Keyword for Open Watcom C32 53
7.3.2.3 The _ _far16 and _Seg16 Keywords ... 53

7.3.3 Based Pointers for Open Watcom C16 and C32 ... 55
7.3.3.1 Segment Constant Based Pointers and Objects 56
7.3.3.2 Segment Object Based Pointers .. 56
7.3.3.3 Void Based Pointers .. 57
7.3.3.4 Self Based Pointers ... 57

7.4 Void .. 58
7.5 The const and volatile Declarations ... 59

8 Storage Classes ... 61
8.1 Type Definitions .. 61

8.1.1 Compatible Types .. 63
8.2 Static Storage Duration .. 64

8.2.1 The static Storage Class ... 65
8.2.2 The extern Storage Class ... 65

8.3 Automatic Storage Duration .. 66
8.3.1 The auto Storage Class .. 67
8.3.2 The register Storage Class ... 67

9 Initialization of Objects .. 69
9.1 Initialization of Scalar Types ... 69
9.2 Initialization of Arrays ... 69
9.3 Initialization of Structures .. 71
9.4 Initialization of Unions .. 71
9.5 Uninitialized Objects .. 72

10 Expressions ... 73
10.1 Lvalues ... 74
10.2 Primary Expressions .. 75
10.3 Postfix Operators .. 76

10.3.1 Array Subscripting ... 76
10.3.2 Function Calls .. 76
10.3.3 Structure and Union Members ... 77
10.3.4 Post-Increment and Post-Decrement ... 78

10.4 Unary Operators ... 79
10.4.1 Pre-Increment and Pre-Decrement Operators .. 79
10.4.2 Address-of and Indirection Operators ... 79
10.4.3 Unary Arithmetic Operators .. 80
10.4.4 The sizeof Operator ... 80

10.5 Cast Operator ... 82
10.6 Multiplicative Operators .. 83
10.7 Additive Operators ... 84
10.8 Bitwise Shift Operators .. 84

vi

Table of Contents
10.9 Relational Operators .. 85
10.10 Equality Operators ... 86
10.11 Bitwise AND Operator ... 86
10.12 Bitwise Exclusive OR Operator ... 87
10.13 Bitwise Inclusive OR Operator .. 87
10.14 Logical AND Operator ... 88
10.15 Logical OR Operator .. 88
10.16 Conditional Operator .. 88
10.17 Assignment Operators .. 89

10.17.1 Simple Assignment .. 90
10.17.2 Compound Assignment ... 90

10.18 Comma Operator .. 90
10.19 Constant Expressions ... 91

11 Statements ... 93
11.1 Labelled Statements ... 93
11.2 Compound Statements ... 93
11.3 Expression Statements ... 94
11.4 Null Statements .. 94
11.5 Selection Statements .. 94

11.5.1 The if Statement ... 95
11.5.2 The switch Statement ... 96

11.6 Iteration Statements .. 97
11.6.1 The while Statement .. 97
11.6.2 The do Statement ... 97
11.6.3 The for Statement .. 98

11.7 Jump Statements ... 99
11.7.1 The goto Statement .. 99
11.7.2 The continue Statement ... 99
11.7.3 The break Statement .. 100
11.7.4 The return Statement ... 100

12 Functions .. 101
12.1 The Body of the Function .. 103
12.2 Function Prototypes ... 104

12.2.1 Variable Argument Lists .. 104
12.3 The Parameters to the Function main ... 106

13 The Preprocessor .. 109
13.1 The Null Directive ... 109
13.2 Including Headers and Source Files ... 109
13.3 Conditionally Including Source Lines ... 110

13.3.1 The #ifdef and #ifndef Directives .. 112
13.4 Macro Replacement ... 113
13.5 Argument Substitution ... 115

13.5.1 Converting An Argument to a String .. 115
13.5.2 Concatenating Tokens ... 115
13.5.3 Simple Argument Substitution .. 116
13.5.4 Variable Argument Macros ... 117
13.5.5 Rescanning for Further Replacement .. 118

13.6 More Examples of Macro Replacement ... 119
13.7 Redefining a Macro .. 120

vii

Table of Contents
13.8 Changing the Line Numbering and File Name .. 121
13.9 Displaying a Diagnostic Message .. 122
13.10 Providing Other Information to the Compiler .. 122
13.11 Standard Predefined Macros .. 122
13.12 Open Watcom C16 and C32 Predefined Macros ... 123
13.13 The offsetof Macro ... 125
13.14 The NULL Macro .. 126

14 The Order of Translation .. 127

Programmer’s Guide ... 129

15 Modularity .. 131
15.1 Reducing Recompilation Time .. 131
15.2 Grouping Code With Related Functionality .. 132
15.3 Data Hiding .. 132

15.3.1 Complete Data Hiding ... 132
15.3.2 Partial Data Hiding .. 133

15.4 Rewriting and Redesigning Modules ... 133
15.5 Isolating System Dependent Code in Modules .. 133

16 Writing Portable Programs ... 135
16.1 Isolating System Dependent Code ... 135
16.2 Beware of Long External Names ... 137
16.3 Avoiding Implementation-Defined Behavior .. 137
16.4 Ranges of Types ... 137
16.5 Special Features ... 138
16.6 Using the Preprocessor to Aid Portability .. 138

17 Avoiding Common Pitfalls ... 141
17.1 Assignment Instead of Comparison ... 141
17.2 Unexpected Operator Precedence .. 142
17.3 Delayed Error From Included File ... 142
17.4 Extra Semi-colon in Macros .. 143
17.5 The Dangling else .. 143
17.6 Missing break in switch Statement .. 144
17.7 Side-effects in Macros ... 145

18 Programming Style ... 147
18.1 Consistency .. 147
18.2 Case Rules for Object and Function Names .. 147
18.3 Choose Appropriate Names ... 149
18.4 Indent to Emphasize Structure ... 149
18.5 Visually Align Object Declarations ... 151
18.6 Keep Functions Small .. 151
18.7 Use static for Most Functions .. 152
18.8 Group Static Objects Together ... 152
18.9 Do Not Reuse the Names of Static Objects ... 152
18.10 Use Included Files to Organize Structures ... 152
18.11 Use Function Prototypes .. 152
18.12 Do Not Do Too Much In One Statement ... 153

viii

Table of Contents
18.13 Do Not Use goto Too Much ... 153
18.14 Use Comments ... 154

Appendices .. 155

A. Compiler Keywords .. 157
A.1 Standard Keywords ... 157
A.2 Open Watcom Extended Keywords .. 157

B. Trigraphs ... 161

C. Escape Sequences ... 163

D. Operator Precedence ... 165

E. Formal C Grammar ... 167
E.1 Lexical Grammar ... 167

E.1.1 Tokens ... 167
E.1.2 Keywords .. 168
E.1.3 Identifiers .. 168
E.1.4 Constants ... 169
E.1.5 String Literals .. 170
E.1.6 Operators ... 170
E.1.7 Punctuators .. 171

E.2 Phrase Structure Grammar ... 171
E.2.1 Expressions .. 171
E.2.2 Declarations ... 173
E.2.3 Statements ... 175
E.2.4 External Definitions .. 176

E.3 Preprocessing Directives Grammar ... 177

F. Translation Limits ... 179

G. Macros for Numerical Limits ... 181
G.1 Numerical Limits for Integer Types .. 181
G.2 Numerical Limits for Floating-Point Types .. 185

H. Implementation-Defined Behavior ... 191
H.1 Translation ... 191
H.2 Environment .. 192
H.3 Identifiers .. 192
H.4 Characters .. 192
H.5 Integers .. 194
H.6 Floating Point .. 195
H.7 Arrays and Pointers ... 195
H.8 Registers .. 197
H.9 Structures, Unions, Enumerations and Bit-Fields ... 197
H.10 Qualifiers ... 198
H.11 Declarators .. 198
H.12 Statements ... 198
H.13 Preprocessing Directives ... 198

ix

Table of Contents
H.14 Library Functions .. 199

I. Examples of Declarations .. 201
I.1 Object Declarations .. 201
I.2 Function Declarations ... 203
I.3 _ _far, _ _near and _ _huge Declarations ... 203
I.4 _ _interrupt Declarations .. 205

J. A Sample Program ... 207
J.1 The memos.h File ... 207
J.2 The memos.c File ... 208

K. Glossary .. 221

x

Introduction

Introduction

2

1 Introduction to C

1.1 History
The C programming language was developed by Dennis Ritchie in 1972 for the UNIX operating system.
Over the years, the language has appeared on many other systems, satisfying a need of programmers who
want to be able to develop applications that can run in many different environments.

Because the C language was never formally defined, each implementation interpreted the behavior of the
language in slightly different ways, and also introduced their own extensions. As a result, the goal of true
software portability was not achieved.

In 1982, the American National Standards Committee formed the X3J11 Technical Committee on the C
Programming Language, whose purpose was to formally define the C language and its library functions,
and to describe its interaction with the execution environment. The C Programming Language standard
was completed in 1989.

The Open Watcom C16 and C32 compiler has evolved from 8086 code generation technology developed
and refined at WATCOM International and the University of Waterloo since 1980. The first Open Watcom
C16 compiler was released in 1988. The first Open Watcom C32 compiler was released in 1989.

1.2 Uses
C is sometimes called a "low-level" language, referring to the fact that C programmers tend to think in
terms of bits, bytes, addresses and other concepts fundamental to assembly-language programming.

But C is also a "broad spectrum" language. In addition to accessing the basic components of the computer,
it also provides features common to many "high-level" languages. Structured program control, data
structures and modular program design are recent additions to some high-level languages, but have been
part of the C language since its inception.

C gives the programmer the ability to write applications at a level just above the assembly language level,
without having to know the assembly language of the machine. Language compilers provided this ability in
the past, but the application was often quite "fat", because the code produced by the compiler was never as
good as could be written by a good assembly language programmer. But with modern code generation
techniques it is often difficult, if not impossible, to distinguish an assembly language program written by a
human from the same program generated by a C compiler (based on code size). In fact, some compilers
now generate better code than all but the best assembly language programmers.

So, what can C be used for? It can be used to write virtually anything, the same way that assembly
language can be used. But other programming languages continue to be used for specific programming
applications at which they excel.

C tends to be used for "systems programming", a term that refers to the writing of operating systems,
programming languages and other software tools that don’t fall into the class of "applications

Uses 3

Introduction

programming". A classic example is the UNIX operating system, developed by Bell Laboratories. It is
written almost entirely in C and is one of the most portable operating systems available.

C is also used for writing large programs that require more efficiency than the average application. Typical
examples are interpreters and compilers for programming languages.

Another area where C is commonly used is large-scale application programs, such as databases,
spreadsheets, word processors and so on. These require a high degree of efficiency and compactness, since
they are often basic to an individual’s or company’s computing needs, and therefore consume a lot of
computer resources.

It seems that C is used extensively for commercially available products, but C can also be used for any
application that just requires more efficiency. For example, a large transaction processing system may be
written in COBOL, but to squeeze the last bit of speed out of the system, it may be desirable to rewrite it in
C. That application could certainly be written in assembly language, but many programmers now prefer to
avoid programming at such a low level, when a C compiler can generate code that is just as efficient.

Finally, of course, a major reason for writing a program in C is that it will run with little or no modification
on any system with a C compiler. In the past, with the proliferation of C compilers and no standard to
guide their design, it was much more difficult. Today, with the appearance of the ISO standard for the C
programming language, a program written entirely in a conforming C implementation should be
transportable to a new compiler with relatively little work. Of course, issues like file names, memory
layout and command line parameter syntax will vary from one system to another, but a properly designed C
application will isolate these parts of the code in "system-dependent" files, which can be changed for each
system. (Refer to "Writing Portable Programs".)

1.3 Advantages
C has a number of major advantages over other programming languages.

• Most systems provide a C compiler.

Vendors of computer systems realize that the success of a system is dependent upon the availability of
software for that system. With the large body of C-based programs in existence, most vendors provide a C
compiler in order to encourage the transporting of some of these programs to their system. For systems that
don’t provide a C compiler, independent companies may develop a compiler.

With the development of the ISO/ANSI C standard, the trend towards universal availability of C compilers
will probably accelerate.

• C programs can be transported easily to other computers and operating systems.

Many programming languages claim transportability. FORTRAN, COBOL and Pascal programs all have
standards describing them, so a program written entirely within the standard definition of the language will
likely be portable. The same is true of C. However, few languages can match portability with the other
advantages of C, including efficiency of generated code and the ability to work close to the machine level.

• Programs written in C are very efficient in both execution speed and code size.

Few languages can match C in efficiency. A good assembly language programmer may be able to produce
code better than a C compiler, but he/she will have to spend much more time in the development of the
application, because assembly language programming lends itself more easily to errors. Compilers for

4 Advantages

Introduction to C

other languages may produce efficient code for applications within their scope, but few produce efficient
code for all applications.

• C programs can get close to the hardware, controlling devices directly if necessary.

Most programs do not need this ability, but if necessary, the program can access particular features of the
computer. For example, a fixed memory location may exist that contains a certain value of use to the
program. It is easy to access it from C, but not from many other languages. (Of course, if the program is
designed to be portable, this section of code will be isolated and clearly marked as depending on the
operating system.)

• C programs are easy to maintain.

Assembly language code is difficult to maintain owing to the very low level of programming (registers,
addressing modes, branching). C programs provide comparable functionality, but at a higher level. The
programmer still thinks in terms of machine capabilities, but without having to know the exact operation of
the hardware, leaving the programmer free to concentrate on program design rather than the intimate details
of coding on that particular machine.

• C programs are easy to understand.

"Easy" is, of course, a relative term. C programs are definitely easier to understand than the equivalent
assembly language program. Another programming language may be easier to understand for a particular
kind of application, but in general C is a good choice.

• All of the above advantages apply regardless of the application or the hardware or operating system
on which it is running.

This is the biggest advantage. Because C programs are portable, and C is not suited only to a certain class
of applications, it is often the best choice for developing an application.

1.4 How to Use This Book
This book is a description of the C programming language as implemented by the Open Watcom C16 and
C32 compilers for the 80x86 family of processors. It is intended to be an easy-to-read description of the C
language. The ISO C standard is the last word on details about the language, but it describes the language
in terms that must be interpreted for each implementation of a C compiler.

This book attempts to describe the C language in terms of general behavior, and the specific behavior of the
C compiler when the standard describes the behavior as implementation-defined.

Areas that are shaded describe the interpretation of the behavior that the Open Watcom C16 and
C32 compilers follow.

Programmers who are writing a program that will be ported to other systems should pay particular attention
when using these features, since other compilers may behave in other ways. As much as possible, an
attempt is made to describe other likely behaviors.

This book does not describe any of the library functions that a C program might use to interact with its
environment. In particular, input and output is not described in this manual. The C language does not
contain any I/O capabilities. The Open Watcom C Library Reference manual describes all of the library
functions, including those used for input and output.

How to Use This Book 5

Introduction

A glossary is included in the appendix, and describes all terms used in the book.

6 How to Use This Book

Language Reference

Language Reference

8

2 Notation

The C programming language contains many useful features, each of which has a number of optional parts.
The ISO C standard describes the language in very precise terms, often giving syntax diagrams to describe
the features.

This book attempts to describe the C language in more friendly terms. Where possible, features are
described using ordinary English. Jargon is avoided, although by necessity, new terminology is introduced
throughout the book. A glossary is provided at the end of the book to describe any terms that are used.

Where the variety of features would create excessive amounts of text, simple syntax diagrams are used. It
is hoped that these are mostly self-explanatory. However, a brief explanation of the notation used is
offered here:

1. Required keywords are in normal lettering style (for example, enum).

2. Terms that describe a class of object that replace the term are in italics (for example, identifier).

3. When two or more optional forms are available, they are shown as follows:

form 1
or
form 2

4. Any other symbol that appears is required, unless otherwise noted.

The following example is for an enumerated type:

enum identifier
or
enum { enumeration-constant-list }
or
enum identifier { enumeration-constant-list }

An enumerated type has three forms:

1. The required keyword enum followed by an identifier that names the type. The identifier is
chosen by the programmer.

2. The required keyword enum followed by a brace-enclosed list of enumeration constants. The
braces are required, and enumeration-constant-list is described elsewhere.

3. The required keyword enum followed by an identifier and a brace-enclosed list of enumeration
constants. As with the previous two forms, the identifier may be chosen by the programmer, the
braces are required and enumeration-constant-list is described elsewhere.

Notation 9

Language Reference

10 Notation

3 Basic Language Elements

The following topics are discussed:

• Character Sets

• Keywords

• Identifiers

• Comments

3.1 Character Sets
The source character set contains the characters used during the translation of the C source file into object
code. The execution character set contains the characters used during the execution of the C program. In
most cases, these two character sets are the same, since the program is compiled and executed on the same
machine. However, C is sometimes used to cross-compile, whereby the compilation of the program occurs
on one machine, but the compiler generates code for some other machine. If the two machines have
different character sets (say EBCDIC and ASCII), then the compiler will, where appropriate, map
characters from the source character set to the execution character set. This mapping is
implementation-defined, but generally maps the visual representation of the character.

Regardless of which C compiler is used, the source and execution character sets contain (at least) the
following characters:

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9
! " # % & ’ () * + , - . /
: ; < = > ? [\] ^ _ { | } ~

as well as the space (blank), horizontal tab, vertical tab and form feed. Also, a new line character will exist
for both the source and execution character sets.

Any character other than those previously listed should appear in a source file in a character constant, a
string or a comment, otherwise the behavior is undefined.

If the character set of the computer being used to compile the program does not contain a certain character,
a trigraph sequence may be used to represent it. Refer to the section "Character Constants".

Character Sets 11

Language Reference

The Open Watcom C16 and C32 compilers use the full IBM PC character set as both the source
and execution character sets. The set of values from hexadecimal 00 to 7F constitute the ASCII
character set.

3.1.1 Multibyte Characters
A multibyte character, as its name implies, is a character whose representation consists of more than one
byte. Multibyte characters allow compilers to provide extended character sets, often for human languages
that contain more characters than those found in the one-byte character set.

Multibyte characters are generally restricted to:

• comments,
• string literals,
• character constants,
• header names.

The method for specifying multibyte characters generally varies depending upon the extended character set.

3.2 Keywords
The following words are reserved as part of the C language and are called keywords. They may not be used
for any kind of identifier, including object names, function names, labels, structure or union tags (names).

auto double inline static
_Bool else int struct
break enum long switch
case extern register typedef
char float restrict union
_Complex for return unsigned
const goto short void
continue if signed volatile
default _Imaginary sizeof while
do

The Open Watcom compilers also reserve the following extended keywords:

Microsoft compilers compatible
__asm __finally __pascal
__based __fortran __saveregs
__cdecl __huge __segment
__declspec __inline __segname
__except __int64 __self
__export __interrupt __stdcall
__far __leave __syscall
__far16 __loadds __try
__fastcall __near __unaligned

IBM compilers compatible
_Cdecl _Finally _Seg16
_Except _Leave _Syscall

12 Keywords

Basic Language Elements

_Export _Packed _System
_Far16 _Pascal _Try
_Fastcall

Open Watcom specific
__builtin_isfloat __ow_imaginary_unit __watcall

Note that, since C is sensitive to the case of letters, changing one or more letters in a keyword to upper case
will prevent the compiler from recognizing it as a keyword, thereby allowing it to be used as an identifier.
However, this is not a recommended programming practice.

3.3 Identifiers
Identifiers are used as:

• object or variable names,
• function names,
• labels,
• structure, union or enumeration tags,
• the name of a member of a structure or union,
• enumeration constants,
• macro names,
• typedef names.

An identifier is formed by a sequence of the following characters:

• upper-case letters "A" through "Z",
• lower-case letters "a" through "z",
• the digits "0" through "9",
• the underscore "_".

The first character may not be a digit.

An identifier cannot be a member of the list of keywords.

Identifiers can consist of any number of characters, but the compiler is not required to consider more than
31 characters as being significant, provided the identifier does not have external linkage (shared by more
than one compiled module of the program). If the identifier is external, the compiler is not required to
consider more than 6 characters as being significant. External identifiers may be case-sensitive.

Of course, any particular compiler may choose to consider more characters as being significant, but a
portable C program will strictly adhere to the above rules. (This restriction is likely to be relaxed in future
versions of the ISO C standard and corresponding C compilers.)

The Open Watcom C16 and C32 compilers do not restrict the number of significant characters for
functions or objects with external or internal linkage.

The linker provided with Open Watcom C16 and C32 restricts the number of significant characters
in external identifiers to 40 characters, and by default, distinguishes between identifiers that differ
only in the case of the letters. An option may be used to force the linker to ignore case differences.

Identifiers 13

Language Reference

Any external identifier that starts with the underscore character ("_") may be reserved by the compiler.
Any other identifier that starts with two underscores, or an underscore and an upper-case letter may be
reserved. Generally, a program should avoid creating identifiers that start with an underscore.

3.4 Comments
A comment is identified by /* followed by any characters and terminated by */. Comments are
recognized anywhere in a program, except inside a character constant or string. Once the /* is found,
characters are examined only until the */ is found. This excludes nesting of comments.

A comment is treated as a "white-space" character, meaning that it is like a space character.

For example, the program fragment,

/* Close all the files.
*/

for(i = 0; i < fcount; i++) { /* loop through list */
fclose(flist[i]); /* close the file */

}

is equivalent to,

for(i = 0; i < fcount; i++) {
fclose(flist[i]);

}

Comments are sometimes used to temporarily remove a section of code during testing or debugging of a
program. For example, the second program fragment could be "commented out" as follows:

/*

for(i = 0; i < fcount; i++) {
fclose(flist[i]);

}
*/

This technique will not work on the first fragment because it contains comments, and comments may not be
nested. For these cases, the #if directive of the C preprocessor may be used. Refer to the chapter "The
Preprocessor" for more details.

The Open Watcom C16 and C32 compilers support an extension for comments. The symbol //
can be used at any point in a physical source line (except inside a character constant or string
literal). Any characters from the // to the end of the line are treated as comment characters. The
comment is terminated by the end of the line. There is no explicit symbol for terminating the
comment. For example, the program fragment used at the beginning of this section can be
rewritten as,

// Close all the files.

for(i = 0; i < fcount; i++) { // loop through list
fclose(flist[i]); // close the file

}

This form of comment can be used to "comment out" code without the difficulties encountered
with /*.

14 Comments

4 Basic Types

The following topics are discussed:

• Declarations of Objects

• Integer Types

• Floating-Point Types

• Enumerated Types

• Arrays

• Strings

4.1 Declarations of Objects
When a name is used in a program, the compiler needs to know what that name represents. A declaration
describes to the compiler what a name is, including:

• How much storage it occupies (objects) or how much storage is required for the value that is
returned (functions), and how the value in that storage is to be interpreted. This is called the type.
Examples include int, float and struct list.

• Whether the name is visible only within the module being compiled, or throughout the program.
This is called the linkage, and is part of the storage class. The keywords extern and static
determine the linkage.

• For object names, whether the object is created every time the function is called and destroyed every
time the function returns. This is called the storage duration, and is part of the storage class. The
keywords extern, static, auto and register determine the storage duration.

The placement of the declaration within the program determines whether the declaration applies to all
functions within the module, or just to the function within which the declaration appears.

The definition of an object is similar to its declaration, except that the storage for the object is reserved.
Whether the declaration of an object is also a definition depends upon the placement of the declaration and
the attributes of the object.

Declarations of Objects 15

Language Reference

The usual form for defining (creating) an object is as follows:

storage-class-specifier type-specifier declarator;
or
storage-class-specifier type-specifier declarator = initializer;

The storage-class-specifier is optional, and is thoroughly discussed in the chapter "Storage Classes". The
type-specifier is also optional, and is thoroughly discussed in the next section and in the chapter "Advanced
Types". At least one of the storage-class-specifier and type-specifier must be specified, and they may be
specified in either order, although it is recommended that the storage-class-specifier always be placed first.

The declarator is the name of the object being defined along with other information about its type. There
may be several declarators, separated by commas.

The initializer is discussed in the chapter "Initialization of Objects".

The following are examples of declarations of objects, along with a brief description of what each one
means. A more complete discussion of the terms used may be found in the relevant section.

int x;

Inside a function
The object x is declared to be an integer, with automatic storage duration. Its value is available
only within the function (or compound statement) in which it is defined. This is also a
definition.

Outside a function
The object x is created and declared to be an integer with static storage duration. Its value is
available within the module in which it is defined, and has external linkage so that any other
module may refer to it by using the declaration,

extern int x;

This is also a definition.

register void * memptr;

Inside a function
The object memptr is declared to be a pointer to void (no particular type of object), and is
used frequently in the function. This is also a definition.

Outside a function
Not valid because of the register storage class.

auto long int x, y;

Inside a function
The objects x and y are declared to be signed long integers with automatic storage duration.
This is also a definition.

16 Declarations of Objects

Basic Types

Outside a function
Not valid because of the auto storage class.

static int nums[10];

Inside a function
The object nums is declared to be an array of 10 integers with static storage duration. Its
value is only available within the function, and will be preserved between calls to the function.
This is also a definition.

Outside a function
The object nums is declared to be an array of 10 integers with static storage duration. Its
value is only available within the module. (The difference is the scope of the object nums.)
This is also a definition.

extern int x;

Inside a function
The object x is declared to be an integer with static storage duration. No other functions within
the current module may refer to x unless they also declare it. The object is defined in another
module, or elsewhere in this function or module.

Outside a function
The object x is declared to be an integer with static storage duration. Its value is available to
all functions within the module. The object is defined in another module, or elsewhere in this
module.

The appendix "Examples of Declarations" contains many more examples of declarations of objects and
functions.

4.2 Name Scope
An identifier may be referenced only within its scope.

An identifier declared within a function or within a compound statement within a function has block scope,
and may be referenced only in the block in which it is declared. The object’s scope includes any enclosed
blocks and terminates at the } which terminates the enclosing block.

An identifier declared within a function prototype (as a parameter to that function) has function prototype
scope, and may not be referenced elsewhere. Its scope terminates at the) which terminates the prototype.

An identifier declared outside of any function or function prototype has file scope, and may be referenced
anywhere within the module in which it is declared. If a function contains a declaration for the same
identifier, the identifier with file scope is hidden within the function. Following the terminating } of the
function, the identifier with file scope becomes visible again.

A label, which must appear within a function, has function scope.

Name Scope 17

Language Reference

4.3 Type Specifiers
Every object has a type associated with it. Functions may be defined to return a value, and that value also
has a type. The type describes the interpretation of a value of that type, such as whether it is signed or
unsigned, a pointer, etc. The type also describes the amount of storage required. Together, the amount of
storage and the interpretation of stored values describes the range of values that may be stored in that type.

There are a number of different types defined by the C language. They provide a great deal of power in
selecting methods for storing and moving data, and also contribute to the readability of the program.

There are a number of "basic types", those which will appear in virtually every program. More
sophisticated types provide methods to describe data structures, and are discussed in the chapter "Advanced
Types".

A type specifier is one or more of:

char
double
float
int
long
short
signed
unsigned
void
enumeration
structure
union
typedef name

and may also include the following type qualifiers:

const
volatile

The Open Watcom compilers also provide the following extended type qualifiers:

__based __fortran _Seg16
_Cdecl __huge __segment
__cdecl __inline __segname
__declspec __int64 __self
_Export __interrupt __stdcall
__export __loadds _Syscall
__far __near __syscall
_Far16 _Packed _System
__far16 _Pascal __unaligned
_Fastcall __pascal __watcall
__fastcall __saveregs

For the extended type qualifiers, see the appendix "Compiler Keywords".

Various combinations of these keywords may be used when declaring an object. Refer to the section on the
type being defined.

18 Type Specifiers

Basic Types

The main types are char, int, float and double. The keywords short, long, signed,
unsigned, const and volatile modify these types.

4.4 Integer Types
The most commonly used type is the integer. Integers are used for storing most numbers that do not require
a decimal point, such as counters, sizes and indices into arrays. The range of integers is limited by the
underlying machine architecture and is usually determined by the range of values that can be handled by the
most convenient storage type of the hardware. Most 16-bit machines can handle integers in the range
-32768 to 32767. Larger machines typically handle integers in the range -2147483648 to
2147483647.

The general integer type includes a selection of types, specifying whether or not the value is to be
considered as signed (negative and positive values) or unsigned (non-negative values), character (holds one
character of the character set), short (small range), long (large range) or long long (very large range).

Just specifying the type int indicates that the amount of storage should correspond to the most convenient
storage type of the hardware. The value is treated as being a signed quantity. According to the C language
standard, the minimum range for int is -32767 to 32767, although a compiler may provide a greater
range.

With Open Watcom C16, int has a range of -32768 to 32767.

With Open Watcom C32, int has a range of -2147483648 to 2147483647.

Specifying the type char indicates that the amount of storage is large enough to store any member of the
execution character set. If a member of the required source character set (see "Character Sets") is stored in
an object of type char, then the value is guaranteed to be positive. Whether or not other characters are
positive is implementation-defined. (In other words, whether char is signed or unsigned is
implementation-defined. If it is necessary for the object of type char to be signed or unsigned, then the
object should be declared explicitly, as described below.)

The Open Watcom C16 and C32 compilers define char to be unsigned, allowing objects of
that type to store values in the range 0 to 255. A command line switch may be specified to cause
char to be treated as signed. This switch should only be used when porting a C program from
a system where char is signed.

The int keyword may be specified with the keywords short or long. These keywords provide
additional information about the range of values to be stored in an object of this type. According to the C
language standard, a signed short integer has a minimum range of -32767 to 32767. A signed long
integer has a minimum range of -2147483647 to 2147483647. A signed long long integer has a
minimum range of -9223372036854775807 to 9223372036854775807.

With Open Watcom C16 and C32, short int has a range of -32768 to 32767, while long
int has a range of -2147483648 to 2147483647, and long long int has a range of
-9223372036854775808 to 9223372036854775807.

The char and int types may be specified with the keywords signed or unsigned. These keywords
explicitly indicate whether the type represents a signed or unsigned (non-negative) quantity.

Integer Types 19

Language Reference

The keyword int may be omitted from the declaration if one (or more) of the keywords signed,
unsigned, short or long is specified. In other words, short is equivalent to signed short int
and unsigned long is equivalent to unsigned long int.

The appendix "Macros for Numerical Limits" discusses a set of macro definitions describing the range and
other characteristics of the various numeric types. The macros from the header <limits.h>, which
describe the integer types, are discussed.

The following table describes all of the various integer types and their ranges as implemented by
the Open Watcom C16 and C32 compilers. Note that the table is in order of increasing storage
size.

Minimum Maximum
Type Value Value

signed char -128 127

unsigned char 0 255

char 0 255

short int -32768 32767

unsigned short int 0 65535

int (C16) -32768 32767

int (C32) -2147483648 2147483647

unsigned int (C16) 0 65535

unsigned int (C32) 0 4294967295

long int -2147483648 2147483647

unsigned long int 0 18446744073709551615

long long int -92233720368547758078 9223372036854775807

unsigned long long 0 18446744073709551615

With Open Watcom C16, an object of type int has the same range as an object of type short
int.

With Open Watcom C32, an object of type int has the same range as an object of type long
int.

20 Integer Types

Basic Types

The following are some examples of declarations of objects with integer type:

char a;
unsigned char b;
signed char c;
short d;
unsigned short int e;
int f,g;
signed h;
unsigned int i;
long j;
unsigned long k
signed long l;
unsigned long int m;
signed long long n;
long long o;
unsigned long long p;
long long int q;

4.5 Floating-Point Types
A floating-point number is a number which may contain a decimal point and digits following the decimal
point. The range of floating-point numbers is usually considerably larger than that of integers, but the
efficiency of integers is usually much greater. Integers are always exact quantities, whereas floating-point
numbers sometimes suffer from round-off error and loss of precision.

On some computers, floating-point arithmetic is emulated (simulated) by software, rather than hardware.
Software emulation can greatly reduce the speed of a program. While this should not affect the portability
of a program, a prudent programmer limits the use of floating-point numbers.

There are three floating-point number types, float, double, and long double.

The appendix "Macros for Numerical Limits" discusses a set of macro definitions describing the range and
other characteristics of the various numeric types. The macros from the header <float.h>, which
describe the floating-point types, are discussed.

The following table gives the ranges available on the 80x86/80x87 using the Open Watcom
C16 and C32 compiler. The floating-point format is the IEEE Standard for Binary Floating-Point
Arithmetic (ANSI/IEEE Std 754-1985).

Smallest Largest Digits 80x87
Absolute Absolute Of Type

Type Value Value Accuracy Name

float 1.1E-38 3.4E+38 6 short real

double 2.2E-308 1.7E+308 15 long real

long double 2.2E-308 1.7E+308 15 long real

Floating-Point Types 21

Language Reference

By default, the Open Watcom C16 and C32 compilers emulate floating-point arithmetic. If the
8087 or 80x87 Numeric Processor Extension (numeric coprocessor, math chip) will be present at
execution time, the compiler can be forced to generate floating-point instructions for the
coprocessor by specifying a command line switch, as described in the User’s Guide. Other than an
improvement in execution speed, the final result should be the same as if the processor is not
present.

The following are some examples of declarations of objects with floating-point type:

float a;
double b;
long double c;

4.6 Enumerated Types
Sometimes it is desirable to have a list of constant values representing different things, and the exact values
are not relevant. They may need to be unique or may have duplicates. For example, a set of actions, colors
or keys might be represented in such a list. An enumerated type allows the creation of a list of items.

An enumerated type is a set of identifiers that correspond to constants of type int. These identifiers are
called enumeration constants. The first identifier in the set has the value 0, and subsequent identifiers are
given the previous value plus one. Wherever a constant of type int is allowed, an enumeration constant
may be specified.

The following type specifier defines the set of actions available in a simple memo program:

enum actions { DISPLAY, EDIT, PURGE };

The enumeration constant DISPLAY is equivalent to the integer constant 0, and EDIT and PURGE are
equivalent to 1 and 2 respectively.

An enumerated type may be given an optional tag (name) with which it may be identified elsewhere in the
program. In the example above, the tag of the enumerated type is actions, which becomes a new type.
If no tag is given, then only those objects listed following the definition of the type may have the
enumerated type.

The name space for enumerated type tags is different from that of object names, labels and member names
of structures and unions, so a tag may be the same identifier as one of these other kinds. An enumerated
type tag may not be the same as the tag of a structure or union, or another enumerated type.

Enumeration constants may be given a specific value by specifying ’=’ followed by the value. For
example,

enum colors { RED = 1, BLUE = 2, GREEN = 4 };

22 Enumerated Types

Basic Types

creates the constants RED, BLUE and GREEN with values 1, 2 and 4 respectively.

enum fruits { GRAPE, ORANGE = 6, APPLE, PLUM };

creates constants with values 0, 6, 7 and 8.

enum fruits { GRAPE, PLUM, RAISIN = GRAPE, PRUNE = PLUM };

makes GRAPE and RAISIN equal to 0, and PLUM and PRUNE equal to 1.

The formal specification of an enumerated type is as follows:

enum identifier
or
enum { enumeration-constant-list }
or
enum identifier { enumeration-constant-list }

enumeration-constant-list:
enumeration-constant

or
enumeration-constant, enumeration-constant-list

enumeration-constant:
identifier

or
identifier = constant-expression

The type of an enumeration is implementation-defined, although it must be compatible with an integer type.
Many compilers will use int.

From the following table, the Open Watcom C16 and Open Watcom C32 compilers will choose
the smallest type that has sufficient range to represent all of the constants of a particular
enumeration:

Type Smallest Value Largest Value

signed char -128 127
unsigned char 0 255
signed short -32768 32767
unsigned short 0 65535
signed long -2147483648 2147483647
unsigned long 0 4294967295
signed long long -9223372036854775808 9223372036854775807
unsigned long long 0 18446744073709551615

A command-line option may be used to force all enumerations to int.

To create an object with enumerated type, one of two forms may be used. The first form is to create the
type as shown above, and then to declare an object as follows:

Enumerated Types 23

Language Reference

enum tag object-name;

For example, the declaration,

enum fruits fruit;

declares the object fruit to be the enumerated type fruits.

The second form is to list the identifiers of the objects following the closing brace of the enumeration
declaration. For example,

enum fruits { GRAPE, ORANGE, APPLE, PLUM } fruit;

Provided no other objects with the same enumeration are going to be declared, the enumerated type tag
fruits is not required. The declaration could be specified as,

enum { GRAPE, ORANGE, APPLE, PLUM } fruit;

An identifier that is an enumeration constant may only appear in one enumeration type. For example, the
constant ORANGE may not be included in another enumeration, because the compiler would then have two
values for ORANGE.

4.7 Arrays
An array is a collection of objects which are all of the same type. All elements (objects) in the array are
stored in contiguous (adjacent) memory.

References to array elements are usually made through indexing into the array. To facilitate this, the
elements of the array are numbered starting at zero. Hence an array declared with n elements is indexed
using indices between 0 and n-1.

An array may either be given an explicit size (using a constant expression) or its size may be determined by
the number of values used to initialize it. Also, it is possible to declare an array without any size
information, in the following cases:

• a parameter to a function is declared as "array of type" (in which case the compiler alters the type to
be "pointer to type"),

• an array object has external linkage (extern) and the definition which creates the array is given
elsewhere,

• the array is fully declared later in the same module.

An array of undetermined size is an incomplete type.

24 Arrays

Basic Types

An array declaration is of the following form:

type identifier [constant-expression];
or
type identifier[] = { initializer-list };
or
type identifier[constant-expression] = { initializer-list };
or
type identifier[];

where type is the type of each element of the array, identifier is the name of the array, constant-expression
is an expression that evaluates to a positive integer defining the number of elements in the array, and
initializer-list is a list of values (of type type) to be assigned to successive elements of the array.

For example,

int values[10];

declares values to be an array of 10 integers, with indices from 0 to 9. The expression values[5]
refers to the sixth integer in the array.

char text[] = { "some stuff" };

declares text to be an array of 11 characters, each containing successive letters from "some stuff".
The value of text[10] is ’\0’ (the null character), representing the terminating character in the string
(see Strings).

extern NODES nodelist[];

declares nodelist to be an array of NODES (defined elsewhere), and the array is of unknown size. In
another source file or later in the current file, there must be a corresponding declaration of nodelist
which defines how big the array actually is.

It is possible to declare multi-dimensional arrays by including more than one set of dimensions. For
example,

int tbl[2][3];

defines a 2-row by 3-column array of integers. In fact, it defines an array of 2 arrays of 3 integers. The
values are stored in memory in the following order:

tbl[0][0]
tbl[0][1]
tbl[0][2]
tbl[1][0]
tbl[1][1]
tbl[1][2]

The rows of the table are stored together. This form of storing an array is called row-major order. The
expression tbl[1][2] refers to the element in the last row and last column of the array.

In an expression, if an array is named without specifying any indices, the value of the array name is the
address of its first element. In the example,

Arrays 25

Language Reference

int array[10];
int * aptr;

aptr = array;

the assignment to aptr is equivalent to,

aptr = &array[0];

Since multi-dimensional arrays are just arrays of arrays, it follows that omission of some, but not all,
dimensions is equivalent to taking the address of the first element of the sub-array. In the example,

int array[9][5][2];
int * aptr;

aptr = array[7];

the assignment to aptr is equivalent to,

aptr = &array[7][0][0];

Note that no checking of indices is performed at execution time. An invalid index (less than zero or greater
than the highest index) will refer to memory as if the array was extended to accommodate the index.

4.8 Strings
A string is a special form of the type "array of characters", specifically an array of characters terminated by
a null character. The null character is a character with the value zero, represented as \0 within a string, or
as the character constant ’\0’. Because string processing is such a common task in programming, C
provides a set of library functions for handling strings.

A string is represented by the address of the first character in the string. The length of a string is the
number of characters up to, but not including, the null character.

An array can be initialized to be a string using the following form:

type identifier[] = { "string value " };

(The braces are optional.) For example,

char ident[] = "This is my program";

declares ident to be an array of 19 characters, the last of which has the value zero. The string has 18
characters plus the null character.

In the above example, ident is an array whose value is a string. However, the quote-enclosed value used
to initialize the array is called a string literal. String literals are described in the "Constants" chapter.

26 Strings

Basic Types

A string may be used anywhere in a program where a "pointer to char" may be used. For example, if the
declaration,

char * ident;

was encountered, the statement,

ident = "This is my program";

would set the value of ident to be the address of the string "This is my program".

Strings 27

Language Reference

28 Strings

5 Constants

A constant is a value which is fixed at compilation time and is often just a number, character or string.
Every constant has a type which is determined by its form and value. For example, the value 1 may have
the type signed int, while the value 400000 may have the type signed long. In many cases, the
type of the constant does not matter. If, for example, the value 1 is assigned to an object of type long
int, then the value 1 will be converted to a long integer before the assignment takes place.

5.1 Integer Constants
An integer constant begins with a digit and contains no fractional or exponent part. A prefix may be
included which defines whether the constant is in octal, decimal or hexadecimal format.

A constant may be suffixed by u or U indicating an unsigned int, or by l or L indicating a long
int, or by both indicating an unsigned long int.

If a constant does not start with a zero and contains a sequence of digits, then it is interpreted as a decimal
(base 10) constant. These are decimal constants:

7
762
98765L

If the constant starts with 0x or 0X followed by the digits from 0 through 9 and the letters a (or A) through
f (or F), then the constant is interpreted as a hexadecimal (base 16) constant. The letters A through F
represent the values 10 through 15 respectively. These are hexadecimal constants:

0X07FFF
0x12345678L
0xFABE

If a constant starts with a zero, then it is an octal constant and may contain only the digits 0 through 7.
These are octal constants:

017
0735643L
0

Note that the constant 0 is actually an octal constant, but is zero in decimal, octal and hexadecimal.

The following table describes what type the compiler will give to a constant. The left column indicates
what base (decimal, octal or hexadecimal) is used and what suffixes (U or L) are present. The right column
indicates the types that may be given to such a constant. The type of an integer constant is the first type
from the table in which its value can be accurately represented.

Integer Constants 29

Language Reference

Constant Type

unsuffixed decimal int, long, unsigned long

unsuffixed octal int, unsigned int, long, unsigned long

unsuffixed hexadecimal int, unsigned int, long, unsigned long

suffix U only unsigned int, unsigned long

suffix L only long, unsigned long

suffixes U and L unsigned long

suffix LL only long long, unsigned long long

suffixes U and LL unsigned long long

The following table illustrates a number of constants and their interpretation and type:

Hexa
Decimal -decimal Open Watcom C16 Open Watcom C32

Constant Value Value Type Type

33 33 21 signed int signed int
033 27 1B signed int signed int
0x33 51 33 signed int signed int
33333 33333 8235 signed long signed int
033333 14043 36DB signed int signed int
0xA000 40960 A000 unsigned int signed int
0x33333 209715 33333 signed long signed int
0x80000000 2147483648 80000000 unsigned long unsigned int
2147483648 2147483648 80000000 unsigned long unsigned int
4294967295 4294967295 FFFFFFFF unsigned long unsigned int

5.2 Floating-Point Constants
A floating-point constant may be distinguished by the presence of either a period, an e or E, or both. It
consists of a value part (mantissa) optionally followed by an exponent. The mantissa may include a
sequence of digits representing a whole number, followed by a period, followed by a sequence of digits
representing a fractional part. The exponent must start with an e or E followed by an optional sign (+ or
-), and a digit sequence representing (with the sign) the power of 10 by which the mantissa should be
multiplied. Optionally, the suffix f or F may be added indicating the constant has type float, or the
suffix l or L indicating the constant has type long double. If no suffix is present then the constant has
type double.

In the mantissa, either the whole number part or the fractional part must be present. If only the whole
number part is present and no period is included then the exponent part must be present.

30 Floating-Point Constants

Constants

The following table illustrates a number of floating-point constants and their type:

Constant Value Type

3.14159265 3.14159265E0 double
11E24 1.1E25 double
.5L 5E-1 long double
7.234E-22F 7.234E-22 float
0. 0E0 double

5.3 Character Constants
A character constant is usually one character enclosed in single-quotes, and indicates a constant whose
value is the representation of the character in the execution character set. A character constant has type
int.

The character enclosed in quotes may be any character in the source character set. Certain characters in the
character set may not be directly representable, since they may be assigned other meanings. These
characters can be entered using the following escape sequences:

Character Character Name Escape Sequence

’ single quote \’
" double quote " or \"
? question mark ? or \?
\ backslash \\

octal value \octal digits (max 3)
hexadecimal value \xhexadecimal digits

For example,

’a’ /* the letter a */
’\’’ /* a single quote */
’?’ /* a question mark */
’\?’ /* a question mark */
’\\’ /* a backslash */

are all simple character constants.

The following are some character constants containing octal escape sequences, made up of a \ followed by
one, two or three octal digits (the digits 0 through 7):

’\0’
’\377’
’\100’

If a character constant containing an octal value is found, but a non-octal character is also present, or if a
fourth octal digit is found, it is not part of the octal character already specified, and constitutes a separate
character. For example,

Character Constants 31

Language Reference

’\1000’
’\109’

the first constant is a two-character constant, consisting of the characters ’\100’ and ’0’ (because an
octal value consists of at most three octal digits). The second constant is also a two-character constant,
consisting of the characters ’\10’ and ’9’ (because 9 is not an octal digit).

If more than one octal value is to be specified in a character constant, then each octal value must be
specified starting with \.

The meaning of character constants with more than one character is implementation-defined.

The following are some character constants containing hexadecimal escape sequences, made up of a \x
followed by one or more hexadecimal digits (the digits 0 through 9, and the letters a through f and A
through F). (The values of these character constants are the same as the first examples of octal values
presented above.)

’\x0’
’\xFF’
’\x40’

If a character constant containing a hexadecimal value is found, but a non-hexadecimal character is also
present, it is not part of the hexadecimal character already specified, and constitutes a separate character.
For example,

’\xFAx’
’\xFx’

the first constant is a two-character constant, consisting of the characters ’\xFA’ and ’x’ (because x is
not a hexadecimal digit). The second constant is also a two-character constant, consisting of the characters
’\xF’ and ’x’.

If more hexadecimal digits are found than are required to specify one character, the behavior is
implementation-defined. Specifically, any sequence of hexadecimal characters in a hexadecimal value in a
character constant is used to specify the value of one character. If more than one hexadecimal value is to be
specified in a character constant, then each hexadecimal value must be specified starting with \x.

The meaning of character constants with more than one character is implementation-defined.

In addition to the above escape sequences, the following escape sequences may be used to represent
non-graphic characters:

Escape
Sequence Meaning

\a Causes an audible or visual alert
\b Back up one character
\f Move to the start of the next page
\n Move to the start of the next line
\r Move to the start of the current line
\t Move to the next horizontal tab
\v Move to the next vertical tab

32 Character Constants

Constants

The following trigraph sequences may be used to represent characters not available on all terminals or
systems:

Character Trigraph Sequence

[??(
] ??)
{ ??<
} ??>
| ??!
??=
\ ??/
^ ??’
~ ??-

The Open Watcom C16 and C32 compilers also allow character constants with more than one
character. These may be used to initialize larger types, such as int. For example, the program
fragment:

int code;
code = ’ab’;

assigns the constant value ’ab’ to the integer object code. The letter b is placed in the lowest
order (least significant) portion of the integer value and the letter a is placed in the next highest
portion.

Up to four characters may be placed in a character constant. Successive characters, starting from
the right-most character in the constant, are placed in successively higher order (more significant)
bytes of the result.

Note that a character constant such as ’a’ is different from the corresponding string literal "a". The
former is of type int and has the value of the letter a in the execution character set. The latter is of type
"pointer to char" and its value is the address of the first character (a) of the string literal.

5.3.1 Wide Character Constants
If the value of a character constant is to be a multibyte character from an extended character set, then a wide
character constant should be specified. Its form is similar to normal character constants, except that the
constant is preceded by the character L.

The type of a wide character constant is wchar_t, which is one of the integral types, and is described in
the header <stddef.h>.

With Open Watcom C16 and C32, wchar_t is defined as unsigned short.

For example, the constant L’a’ is a wide character constant containing the letter a from the source
character set, and has type wchar_t. In contrast, the constant ’a’ is a character constant containing the
letter a, and has type int.

How the multibyte character maps onto the wide character value is defined by the mbtowc library
function.

Character Constants 33

Language Reference

As shown above, a wide character constant may also contain a single byte character, since an extended
character set contains the single byte characters. The single byte character is mapped onto the
corresponding wide character code.

5.4 String Literals
A sequence of zero or more characters enclosed within double-quotes is a string literal.

Most of the same rules for creating character constants also apply to creating string literals. However, the
single-quote may be entered directly or as the \’ escape sequence. The double-quote must be entered as
the \" escape sequence.

The value of a string literal is the sequence of characters within the quotes, plus a null character at the end.

The type of a string literal is "array of char".

The following are examples of string literals:

"Hello there"
"\"Quotes inside string\""
"G’day"

If two or more string literals are adjacent, the compiler will join them together into one string literal. The
pair of string literals,

"Hello" "there"

would be joined by the compiler to be,

"Hellothere"

and is an array of 11 characters, including the single terminating null character.

The joining of adjacent string literals occurs after the replacement of escape sequences. In the examples,

"\xFAB\xFA" "B"
"\012\01" "2"

the first string, after joining, consists of three characters, with the values ’\xFAB’, ’\xFA’ and ’B’.
The second string, after joining, also consists of three characters, with the values ’\012’, ’\01’ and
’2’.

A program should not attempt to modify a string literal, as this behavior is undefined. On computers where
memory can be protected, it is likely that string literals will be placed where the program cannot modify
them. An attempt to modify them will cause the program to fail. On other computers without such
protection, the literal can be modified, but this is generally considered to be a poor programming practice.
(Constants should be constant!)

A string literal normally is a string. It is not a string if one of the characters within double-quotes is the null
character (\0). If such a string literal is treated as a string, then only those characters before the first null
character will be considered part of the string. The characters following the first null character will be
ignored.

34 String Literals

Constants

If a source file uses the same string literal in several places, the compiler may combine them so that only
one instance of the string exists and each reference refers to that string. In other words, the addresses of
each of the string literals would be the same. However, no program should rely on this since other
compilers may make each string a separate instance.

The Open Watcom C16 and C32 compilers combine several instances of the same string literal in
the same module into a single string literal, provided that they occur in declarations of constant
objects or in statements other than declarations (eg. assignment).

If the program requires that several string literals be the same instance, then an object should be declared as
an array of char with its value initialized to the string.

5.4.1 Wide String Literals
If any of the characters in a string literal are multibyte characters from an extended character set, then a
wide string literal should be specified. Its form is similar to normal string literals, except that the string is
preceded by the character L.

The type of a wide string literal is "array of wchar_t". wchar_t is one of the integral types, and is
described in the header <stddef.h>.

With Open Watcom C16 and C32, wchar_t is defined as unsigned short.

For example, the string literal L"ab" is a wide string literal containing the letters a and b. Its type is
"array [3] of wchar_t", and the values of its elements are L’a’, L’b’ and ’\0’. In contrast, the string
literal "ab" has type "array [3] of char", and the values of its elements are ’a’, ’b’ and ’\0’.

How the multibyte characters map onto wide character values is defined by the mbtowc library function.

As shown above, a wide string literal may also contain single byte characters, since the extended character
set contains the single byte characters. The single byte characters are mapped onto the corresponding wide
character codes.

Adjacent wide string literals will be concatenated by the compiler and a null character appended to the end.
If a string literal and a wide string literal are adjacent, the behavior when the compiler attempts to
concatentate them is undefined.

String Literals 35

Language Reference

36 String Literals

6 Type Conversion

Whenever two operands are involved in an operation, some kind of conversion of one or both of the
operands may take place. For example, a short int and a long int cannot be directly added.
Instead, the short int must first be converted to a long int, then the two values can be added.

Fortunately, C provides most conversions as implicit operations. Simply by indicating that the two values
are to be added, the C compiler will check their types and generate the appropriate conversions. Sometimes
it is necessary, however, to be aware of exactly how C will convert the operands.

Conversion of operands always attempts to preserve the value of the operand. Where preservation of the
value is not possible, the compiler will sign-extend signed quantities and discard the high bits of quantities
being converted to smaller types.

The rules of type conversions are fully discussed in the following sections.

6.1 Integral Promotion
Rule: A char, short int or int bit-field in either of their signed or unsigned forms, or an

object that has an enumerated type, is always converted to an int. If the type int cannot
contain the entire range of the object being converted, then the object will be converted to
an unsigned int.

A signed or unsigned char will be converted to a signed int without changing the value.

With Open Watcom C16, a short int has the same range as int, therefore a signed
short int is converted to a signed int, and an unsigned short int is converted to
an unsigned int, without changing the value.

With Open Watcom C32, a signed or unsigned short int is converted to an int without
changing the value.

These promotions are called the integral promotions.

6.2 Signed and Unsigned Integer Conversion
Rule: If an unsigned integer is converted to an integer type of any size, then, if the value can be

represented in the new type, the value remains unchanged.

If an unsigned integer is converted to a longer type (type with greater range), then the value will not
change. If it is converted to a type with a smaller range, then provided the value can be represented in the
smaller range, the value will remain unchanged. If the value cannot be represented, then if the result type is
signed, the result is implementation-defined. If the result type is unsigned, the result is the integer
modulo (1+the largest unsigned number that can be stored in the shorter type).

Signed and Unsigned Integer Conversion 37

Language Reference

With Open Watcom C16, unsigned integers are promoted to longer types by extending the
high-order bits with zeros. They are demoted to shorter types by discarding the high-order portion
of the larger type.

Consider the following examples of 32-bit quantities (unsigned long int) being converted to 16-bit
quantities (signed short int or unsigned short int):

32-bit 16-bit signed unsigned
long representation representation short short

65538 0x00010002 0x0002 2 2
100000 0x000186A0 0x86A0 -31072 34464

Rule: When a signed integer is converted to an unsigned integer of equal or greater length, if the
value is non-negative, the value will be unchanged.

A non-negative value stored in a signed integer may be converted to an equal or larger integer type without
affecting the value. A negative value is first converted to the signed type of the same length as the result,
then (1+the largest unsigned number that can be stored in the result type) is added to the value to convert it
to the unsigned type.

With Open Watcom C16, signed integers are promoted to longer types by sign-extending the value
(the high bit of the shorter type is propogated throughout the high bits of the longer type). When
the longer type is unsigned, the sign-extended bit-pattern is then treated as an unsigned value.

Consider the following examples of 16-bit signed quantities (signed short int) being converted to
32-bit quantities (signed long int and unsigned long int):

signed 16-bit 32-bit signed unsigned
short represention representation long long

-2 0xFFFE 0xFFFFFFFE -2 4294967294
32766 0x7FFE 0x00007FFE 32766 32766

Rule: When a signed integer is converted to a longer signed integer, the value will not change.

Rule: When a signed integer is converted to a shorter type, the result is implementation-defined.

With Open Watcom C16, signed integers are converted to a shorter type by preserving the
low-order (least significant) portion of the larger type.

38 Signed and Unsigned Integer Conversion

Type Conversion

6.3 Floating-Point to Integer Conversion
Rule: When a floating-point type is converted to integer, the fractional part is discarded. If the

value of the integer part cannot be represented in the integer type, then the result is
undefined.

Hence, it is valid only to convert a floating-point type to integer within the range of the integer type being
converted to. Refer to the section "Integer Types" for details on the range of integers.

6.4 Integer to Floating-Point Conversion
Rule: When the value of an integer type is converted to a floating-point type, and the integer

value cannot be represented exactly in the floating-point type, the value will be rounded
either up or down.

Rounding of floating-point numbers is implementation-defined. The technique being used by the compiler
may be determined from the macro FLT_ROUNDS found in the header <float.h>. The following table
describes the meaning of the various values:

FLT_ROUNDS Technique

-1 indeterminable
0 toward zero
1 to nearest number
2 toward positive infinity
3 toward negative infinity

The Open Watcom C16 and C32 compilers will round to the nearest number. (The value of
FLT_ROUNDS is 1.)

Rule: When a floating-point value is converted to a larger floating-point type (float to
double, float to long double, or double to long double), the value remains
unchanged.

Rule: When any floating-point type is demoted to a floating-point type with a smaller range, then
the result will be undefined if the value lies outside the range of the smaller type. If the
value lies inside the range, but cannot be represented exactly, then rounding will occur in
an implementation-defined manner.

The Open Watcom C16 and C32 compilers round to the nearest number. (The value of
FLT_ROUNDS is 1.)

Integer to Floating-Point Conversion 39

Language Reference

6.5 Arithmetic Conversion
Whenever two values are used with a binary operator that expects arithmetic types (integer or
floating-point), conversions may take place implicitly. Most binary operators work on two values of the
same type. If the two values have different types, then the type with the smaller range is always promoted
to the type with the greater range. Conceptually, each type is found in the table below and the type found
lower in the table is converted to the type found higher in the table.

long double
double
float
unsigned long
long
unsigned int
int

Note that any types smaller than int have integral promotions performed on them to promote them to
int.

The following table illustrates the result type of performing an addition on combinations of various types:

Operation Result Type

signed char + signed char signed int
unsigned char + signed int signed int
signed int + signed int signed int
signed int + unsigned int unsigned int
unsigned int + signed long signed long
signed int + unsigned long unsigned long
signed char + float float
signed long + double double
float + double double
float + long double long double

6.6 Default Argument Promotion
When a call is made to a function, the C compiler checks to see if the function has been defined already, or
if a prototype for that function has been found. If so, then the arguments to the function are converted to
the specified types. If neither is true, then the arguments to the function are promoted as follows:

• all integer types have the integral promotions performed on them, and,
• all arguments of type float are promoted to double.

If the definition of the function does not have parameters with types that match the promoted types, the
behavior is undefined.

40 Default Argument Promotion

7 Advanced Types

The following topics are discussed:

• Structures

• Unions

• Pointers

• Void

• The const and volatile Declarations

7.1 Structures
A structure is a type composed of a sequential group of members of various types. Like other types, a
structure is a model describing storage requirements and interpretations, and does not reserve any storage.
Storage is reserved when an object is declared to be an instance of the structure.

Each of the members of a structure must have a name, with the exception of bit-fields.

With Open Watcom C16 and C32, a structure member may be unnamed if the member is a
structure or union.

A structure may not contain a member with an incomplete type. In particular, it may not contain a member
with a type of the structure being defined (otherwise the structure would have indeterminate size), although
it may contain a pointer to it.

The structure may be given an optional tag with which the structure may be referenced elsewhere in the
program. If no tag is given, then only those objects listed following the definition of the structure may have
the structure type.

The name space for structure tags is different from that of object names, labels and member names, so a tag
may be the same identifier as one of these other kinds. A structure tag may not be the same as the tag of a
union or enumerated type, or another structure.

Each structure has its own name space, so an identifier may be used as a member name in more than one
structure. An identifier that is an object name, structure tag, union tag, union member name, enumeration
tag or label may also be used as a member name without ambiguity.

Structures help to organize program data by collecting several related objects into one object. They are also
used for linked lists, trees and for describing externally-defined regions of data that the application must
access.

Structures 41

Language Reference

The following structure might describe a token identified by parsing a typed command:

struct tokendef {

int length;
int type;
char text[80];

};

This defines a structure containing three members, an integer containing the token length, another integer
containing some encoding of the token type, and the third an array of 80 characters containing the text of
the token. The tag of the structure is tokendef.

The above definition does not actually create an object containing the structure. Creation of an instance of
the structure requires a list of identifiers following the structure definition, or to use struct tokendef
in place of a type for declaring an object. For example,

struct tokendef {

int length;
int type;
char text[80];

} token;

is equivalent to,

struct tokendef {

int length;
int type;
char text[80];

};

struct tokendef token;

Both create the object token as an instance of the structure tokendef. The type of token is struct
tokendef.

References to a member of a structure are made using the dot operator (.). The first operand of the .
operator is the object containing the structure. The second operand is the name of the member. For
example, token.length refers to the length member of the tokendef structure contained in
token.

If tokenptr is declared as,

struct tokendef * tokenptr;

(tokenptr is a pointer to a tokendef structure), then,

(*tokenptr).length

42 Structures

Advanced Types

refers to the length member of the tokendef structure that tokenptr points to. Alternatively, to
refer to a member of a structure, the arrow operator (->) is used:

tokenptr->length

is equivalent to,

(*tokenptr).length

If a structure contains an unnamed member which is a structure or union, then the members of the
inner structure or union are referenced as if they were members of the outer structure. For
example,

struct outer {

struct inner {
int a, b;

};
int c;

} X;

The members of X are referenced as X.a, X.b and X.c.

Each member of a structure is at a higher address than the previous member. Alignment of members may
cause (unnamed) gaps between members, and an unnamed area at the end of the structure.

The Open Watcom C16 and C32 compilers provide a command-line switch and a #pragma to
control the alignment of members of structures. See the User’s Guide for details.

In addition, the _Packed keyword is provided, and if specified before the struct keyword, will
force the structure to be packed (no alignment, no gaps) regardless of the setting of the
command-line switch or the #pragma controlling the alignment of members.

A pointer to an object with a structure type, suitably cast, is also a pointer to the first member of the
structure.

A structure declaration of the form,

struct tag;

can be used to declare a new structure within a block, temporarily hiding the old structure. When the block
ends, the previous structure’s hidden declaration will be restored. For example,

struct thing { int a,b; };
/* ... */

{
struct thing;
struct s1 { struct thing * thingptr; } tptr;
struct thing { struct s1 * s1ptr; } sptr;

}

the original definition of struct thing is suppressed in order to create a new definition. Failure to
suppress the original definition would result in thingptr being a pointer to the old definition of thing
rather than the new one.

Structures 43

Language Reference

Redefining structures can be confusing and should be avoided.

7.1.1 Bit-fields
A member of a structure can be declared as a bit-field, provided the type of the member is int,
unsigned int or signed int.

In addition, the Open Watcom C16 and C32 compilers allow the types char, unsigned char,
short int and unsigned short int to be bit-fields.

A bit-field declares the member to be a number of bits. A value may be assigned to the bit-field in the same
manner as other integral types, provided the value can be stored in the number of bits available. If the
value is too big for the bit-field, excess high bits are discarded when the value is stored.

The type of the bit-field determines the treatment of the highest bit of the bit-field. Signed types cause the
high bit to be treated as a sign bit, while unsigned types do not treat it as a sign bit. For a bit-field defined
with type int (and no signed or unsigned keyword), whether or not the high bit is considered a sign
bit is implementation-defined.

The Open Watcom C16 and C32 compilers treat the high bit of a bit-field of type int as a sign
bit.

A bit-field is declared by following the member name by a colon and a constant expression which evaluates
to a non-negative value that does not exceed the number of bits in the type.

A bit-field may be declared without a name and may be used to align a structure to an imposed form. Such
a bit-field cannot be referenced.

If two bit-fields are declared sequentially within the same structure, and they would both fit within the
storage unit assigned to them by the compiler, then they are both placed within the same storage unit. If the
second bit-field doesn’t fit, then whether it is placed in the next storage unit, or partially placed in the same
unit as the first and spilled over into the next unit, is implementation-defined.

The Open Watcom C16 and C32 compilers place a bit-field in the next storage unit if it will not fit
in the remaining portion of the previously defined bit-field. Bit-fields are not allowed to straddle
storage unit boundaries.

An unnamed member declared as : 0 prevents the next bit-field from being placed in the same storage
unit as the previous bit-field.

The order that bit-fields are placed in the storage unit is implementation-defined.

The Open Watcom C16 and C32 compilers place bit-fields starting at the low-order end (least
significant bit) of the storage unit. If a 1-bit bit-field is placed alone in an unsigned int then a
value of 1 in the bit-field corresponds to a value of 1 in the integer.

44 Structures

Advanced Types

Consider the following structure definition:

struct list_el {

struct list_el * link;
unsigned short elnum;
unsigned int length : 3;
signed int offset : 4;
int flag : 1;
char * text;

};

The structure list_el contains the following members:

1. link is a pointer to a list_el structure, indicating that instances of this structure will
probably be used in a linked list,

2. elnum is an unsigned short integer,

3. length is an unsigned bit-field containing 3 bits, allowing values in the range 0 through 7,

4. offset is a signed bit-field containing 4 bits, which will be placed in the same integer with
length. Since the type is signed int, the range of values for this bit-field is -8 through 7,

5. flag is a 1-bit field,

Since the type is int, the Open Watcom C16 and C32 compilers will treat the bit as a
sign bit, and the set of values for the bit-field is -1 and 0.

6. text is a pointer to character, possibly a string.

7.2 Unions
A union is similar to a structure, except that each member of a union is placed starting at the same storage
location, rather than in sequentially higher storage locations. (The Pascal term for a union is "variant
record".)

The name space for union tags is different from that of object names, labels and member names, so a tag
may be the same identifier as one of these other kinds. The tag may not be the same identifier as the tag of
a structure, enumeration or another union.

Each union has its own name space, so an identifier may be used as a member name in several different
unions. An identifier that is an object name, structure tag, structure member name, union tag, enumeration
tag or label may also be used as a member name without ambiguity.

With Open Watcom C16 and C32, unions, like structures, may contain unnamed members that are
structures or unions. References to the members of an unnamed structure or union are made as if
the members of the inner structure or union were at the outer level.

The size of a union is the size of the largest of the members it contains.

A pointer to an object that is a union points to each of the members of the union. If one or more of the
members of the union is a bit-field, then a pointer to the object also points to the storage unit in which the
bit-field resides.

Unions 45

Language Reference

Storing a value in one member of a union, and then referring to it via another member is only meaningful
when the different members have the same type. Members of a union may themselves be structures, and if
some or all of the members start with the same members in each structure, then references to those structure
members may be made via any of the union members. For example, consider the following structure and
union definitions:

struct rec1 {

int rectype;
int v1,v2,v3;
char * text;

};

struct rec2 {
int rectype;
short int flags : 8;
enum {red, blue, green} hue;

};

union alt_rec {
struct rec1 val1;
struct rec2 val2;

};

alt_rec is a union defining two members val1 and val2, which are two different forms of a record,
namely the structures rec1 and rec2 respectively. Each of the different record forms starts with the
member rectype. The following program fragment would be valid:

union alt_rec record;
/* ... */
record.rec1.rectype = 33;
DoSomething(record.rec2.rectype);

However, the following fragment would exhibit implementation-defined behavior:

record.rec1.v1 = 27;
DoSomethingElse(record.rec2.hue);

In other words, unless several members of a union are themselves structures where the first few members
are of the same type, a program should not store into a union member and retrieve a value using another
union member. Generally, a flag or other indicator is kept to describe which member of the union is
currently the "active" member.

7.3 Pointers
A pointer to an object is equivalent to the address of the object in the memory of the computer.

An object may be declared to be a pointer to a type of object, or it may be declared to be a pointer to no
particular type. The form,

46 Pointers

Advanced Types

type * identifier;

declares the identifier to be a pointer to the given type. If type is void, then the identifier is a pointer to no
particular type of object (a generic pointer).

The following examples illustrate various pointer declarations:

int * intptr;
intptr is a pointer to an int.

char * charptr;
charptr is a pointer to a char.

struct tokendef * token;
token is a pointer to the structure tokendef.

char * argv[];
argv is an array of pointers to char or an array of pointers to strings.

char ** strptr;
strptr is a pointer to a pointer to char.

void * dumpbeg;
dumpbeg is a pointer, but to no particular type of object.

Any place that a pointer may be used, the constant 0 may also be used. This value is the null pointer
constant. The value that is used internally to represent a null pointer is guaranteed not to be a pointer to an
object. It does not necessarily correspond to the integer value 0. It merely represents a pointer that does
not currently point at anything. The macro NULL, defined in the header <stddef.h>, may also be used
in place of 0.

7.3.1 Special Pointer Types for Open Watcom C16

Note: the following sections only apply to the Open Watcom C16 (16-bit) compiler. For the
Open Watcom C32 compiler, see the section "Special Pointer Types for Open Watcom C32".

On the 8086, a normal pointer (16 bits) can only point to a 64K region of the total memory available on the
machine. This effectively limits any program to a maximum of 64K of executable code and 64K of data.
For many applications, this does not pose a limitation.

Some applications need more than 64K of code or data, or both. The Open Watcom C16 compiler provides
a mechanism whereby pointers can be declared that get beyond the 64K limit. This can be done either by
specifying an option when compiling the files (see the User’s Guide) or by including a special type
qualifier keyword in the declaration of the object. Later sections describe these keywords and their use.

The use of the keywords may prevent the program from compiling using other C compilers, in particular
when the program is being transported to another system. However, the preprocessor can be used to
eliminate the keywords on these other systems.

Before discussing the special pointer types, it is important to understand the different memory models that
are available and what they mean. The five memory models are referred to as:

small small code (code < 64K), small data (data < 64K)

Pointers 47

Language Reference

compact small code (code < 64K), big data (total data > 64K, all objects < 64K)

medium big code (code > 64K), small data (data < 64K)

large big code (code > 64K), big data (total data > 64K, all objects < 64K)

huge big code (code > 64K), huge data (total data > 64K, objects > 64K)

The following sections discuss the memory models in terms of "small" and "big" code and data sizes. The
terms "small", "compact", "medium", "large" and "huge" are simply concise terms used to describe the
combinations of code and data sizes available.

7.3.1.1 The Small and Big Code Models

Each program can use either small code (less than 64K) or big code (more than 64K). Small code means
that all functions (together) must fit within the 64K limit on code size. It is possible to call a function using
only a 16-bit pointer. This is the default.

Big code removes the restriction, but requires that all functions be called with a 32-bit pointer. A 32-bit
pointer consists of two 16-bit quantities, called the segment and offset. (When the computer uses the
segment and offset to refer to an actual memory location, the two values are combined to produce a 20-bit
memory address, which allows for the addressing of 1024K of memory.) Because of the larger pointers, the
code generated by the big code option takes more space and takes longer to execute.

When the big code option is being used, it is possible to group functions together into several 64K (or
smaller) regions. Each module can be its own region, or several modules can be grouped. It is possible to
call other functions within the same group using a 16-bit value. These functions are said to be near.
Functions outside the group can still be called, but must be called using a 32-bit value. These functions are
said to be far.

When the big code option is given on the command line for compiling the module, ordinary pointers to
functions will be defined automatically to be of the larger type, and function calls will be done using the
longer (32-bit) form.

It is also possible to use the small code option, and to override certain functions and pointers to functions as
being far. However, this method may lead to problems. The Open Watcom C16 compiler generates special
function calls that the programmer doesn’t see, such as checking for stack overflow when a function is
invoked. These calls are either near or far depending entirely on the memory model chosen when the
module is compiled. If the small code model is being used, all calls will be near calls. If, however, several
code groups are created with far calls between them, they will all need to access the stack overflow
checking routines. The linker can only place these special routines in one of the code groups, leaving the
other functions without access to them, causing an error.

To resolve this problem, mixing code models requires that all modules be compiled with the big code
model, overriding certain functions as being near. In this manner, the stack checking routines can be placed
in any code group, which the other code groups can still access. Alternatively, a command-line switch may
be used to turn off stack checking, so no stack checking routines get called.

7.3.1.2 The Small and Big Data Models

Each program can use either small data (less than 64K) or big data (more than 64K). Small data requires
that all objects exist within one 64K region of memory. It is possible to refer to each object using a 16-bit
pointer. This is the default.

48 Pointers

Advanced Types

Big data removes the restriction, but all pointers to data objects require a 32-bit pointer. As with the big
code option, extra instructions are required to manipulate the 32-bit pointer, so the generated code will be
larger and not as fast.

With either small or big data, each object is restricted in size to a maximum of 64K bytes. However, an
object may be declared as huge, allowing the object to be bigger than 64K bytes. Pointers to huge objects
are the least efficient because of extra code required to handle them, especially when doing pointer
arithmetic. Huge objects are discussed in the section "The _ _huge Keyword".

When the big data option is being used, the program still retains one region up to 64K in size in which
objects can be referred to using 16-bit pointers, regardless of the code group being executed. These objects
are said to be near. Objects outside this region can still be referenced, but must be referred to using a
32-bit value. These objects are said to be far.

When the big data option is given on the command line for compiling the module, ordinary pointers to
objects other than functions will be defined automatically to be of the larger type.

It is also possible to use the small data option, and to override certain objects as being far. The programmer
must decide which method is easier to use.

7.3.1.3 Mixing Memory Models

It is possible to mix small and big code and data pointers within one program. In fact, a programmer
striving for optimum efficiency will probably mix pointer types. But great care must be taken!

In some applications, the programmer may want the ability to have either big code or big data, but won’t
want to pay the extra-code penalty required to compile everything accordingly. In the case of big data, the
programmer may realize that 99% of the data structures can reside within the 64K limit, and the remaining
ones must go beyond that limit. Similarly, it may be desirable to have only a few functions that don’t fit
within the 64K limit.

When overriding the current memory model, it is very important to declare each type properly.

The following sections describe how to override the current memory model.

7.3.1.4 The _ _far Keyword for Open Watcom C16

When the big code memory model is in effect, functions are far and pointers to functions are declared
automatically to be pointers to far functions. Similarly, the big data model causes all pointers to objects
(other than functions) to be pointers to far objects. However, when either the small code or small data
model is being used, the keyword __far may be used to override to the big model.

The __far keyword is a type qualifier that modifies the token that follows it. If __far precedes* (as in
__far *), then the pointer points to something far. Otherwise, if __far precedes the identifier of the
object or function being declared (as in __far x), then the object itself is far.

The keyword __far can only be applied to function and object names and the indirection (pointer) symbol
*. Parameters to functions may not be declared as __far since they are always in the 64K data area that is
near.

Pointers 49

Language Reference

Open Watcom C16 provides the predefined macros far and _far for convenience and
compatibility with the Microsoft C compiler. They may be used in place of __far.

The following examples illustrate the use of the __far keyword. The examples assume that the small
memory model (small code, small data) is being used.

int __far * ptr;

declares ptr to be a pointer to an integer. The object ptr is near (addressable using only 16 bits),
but the value of the pointer is the address of an integer which is far, and so the pointer contains 32
bits.

int * __far fptr;

also declares fptr to be a pointer to an integer. However, the object fptr is far, but the integer
that it points to is near.

int __far * __far ffptr;

declares ffptr to be a pointer (which is far) to an integer (which is far).

When declaring a function, placing the keyword __far in front of the function name causes the compiler
to treat the function as being far. It is important, if the function is called before its definition, that a
function prototype be included prior to any calls. For example, the declaration,

void __far BubbleSort();

declares the function BubbleSort to be far, meaning that any calls to it must be far calls.

Here are a few more examples. These, too, assume that the small memory model (small code, small data) is
being used.

struct symbol * __far FSymAlloc(void);

declares the function FSymAlloc to be far, returning a pointer to a near symbol structure.

struct symbol __far * __far FFSymAlloc(void);

declares the function FFSymAlloc to be far, returning a pointer to a far symbol structure.

void Indirect(float __far fn());

declares the function Indirect to be near, taking one parameter fn which is a pointer to a far
function that returns a float.

int AdjustLeft(struct symbol * __far symptr);

is an invalid declaration, since it attempts to declare symptr to be far. All parameters must be
near, since they reside in the 64K data area that is always near.

7.3.1.5 The _ _near Keyword for Open Watcom C16

When the small code memory model is in effect, functions are near, and pointers to functions are
automatically declared to be pointers to near functions. Similarly, the small data model causes all pointers
to objects (other than functions) to be pointers to near objects. However, when either the big code or big
data model is being used, the keyword __near may be used to override to the small model.

The __near keyword is a type qualifier that modifies the token that follows it. If __near precedes* (as
in __near *), then the pointer points to something near. Otherwise, if __near precedes the identifier of
the object or function being declared (as in __near x), then the object itself is near.

50 Pointers

Advanced Types

The keyword __near can only be applied to function and object names and the indirection (pointer)
symbol *.

Open Watcom C16 provides the predefined macros near and _near for convenience and
compatibility with the Microsoft C compiler. They may be used in place of __near.

The following examples illustrate the use of the __near keyword. These examples assume that the large
memory module (big code, big data) is being used.

extern int __near * x;

declares the object x to be a pointer to a near integer. (x is not necessarily within the 64K data area
that is near, but the integer that it points to is.)

extern int * __near nx;

declares the object nx to be near, and is a pointer to a far integer. (nx is within the 64K data area
that is near, but the integer that it points to might not be.)

extern int __near * __near nnx;

declares the object nnx to be near, and is a pointer to a near integer. (nnx and the integer that it
points to are both within the 64K data area that is near.)

struct symbol * __near NSymAlloc(void);

declares the function NSymAlloc to be near, and returns a pointer to a far symbol structure.

struct symbol __near * __near NNSymAlloc(void);

declares the function NNSymAlloc to be near, and returns a pointer to a near symbol structure.

7.3.1.6 The _ _huge Keyword for Open Watcom C16

Even using the big data model, each object is restricted in size to 64K. Some applications will need to get
beyond this limitation. The Open Watcom C16 compiler provides the keyword __huge to describe those
objects that exceed 64K in size. The code generated for these objects is less efficient than for __far
objects.

The declaration of such objects follows the same pattern as above, with the keyword __huge preceding
the name of the object if the object itself is bigger than 64K, or preceding the * if the pointer is to an object
that is bigger than 64K.

The keyword __huge can only be applied to arrays. Huge objects may be used in both the small and big
data models.

Open Watcom C16 provides the predefined macros huge and _huge for convenience and
compatibility with the Microsoft C compiler. They may be used in place of __huge.

These examples illustrate the use of the __huge keyword. They assume that big code, small data (the
medium memory model) is in effect.

int __huge iarray[50000];

declares the object iarray to be an array of 50000 integers, for a total size of 100000 bytes.

int __huge * iptr;

declares iptr to be near, and a pointer to an integer that is part of a huge array, such as an element
of iarray.

Pointers 51

Language Reference

7.3.2 Special Pointer Types for Open Watcom C32

With an 80386 processor in "protect" mode, a normal pointer (32 bits) can point to a 4 gigabyte
(4,294,967,296 byte) region of the memory available on the machine. (In practice, memory limits may
mean that these regions will be smaller than 4 gigabytes.) These regions are called segments, and there may
be more than one segment defined for the memory. Each 32-bit pointer is actually an offset within a 4
gigabyte segment, and the offsets within two different segments are generally not related to each other in a
known manner.

As an example, the screen memory may be set up so that it resides in a different region of the memory from
the program’s data. Normal pointers (those within the program’s data area) will not be able to access such
regions.

Like the 16-bit version of Open Watcom C (for the 8086 and 80286), Open Watcom C32 uses the __near
and __far keywords to describe objects that are either in the normal data space or elsewhere.

Objects or functions that are near require a 32-bit pointer to access them.

Objects or functions that are far require a 48-bit pointer to access them. This 48-bit pointer consists of two
parts: a selector consisting of 16 bits, and an offset consisting of 32 bits. A selector is similar to a segment
in a 16-bit program’s far pointer, except that the numeric value of the selector does not directly determine
the memory region. Instead, the processor uses the selector value in conjunction with a "descriptor table"
to determine what region of memory is to be accessed. In the discussion of far pointers on the 80386, the
terms selector and segment may be used interchangeably.

Like the 16-bit compiler, the Open Watcom C32 compiler supports the small, compact, medium and large
memory models. Throughout the discussions in the following sections, it is assumed that the small memory
model is being used, since it is the most likely to be used.

7.3.2.1 The _ _far Keyword for Open Watcom C32

The __far keyword is a type qualifier that modifies the token that follows it. If __far precedes* (as in
__far *), then the pointer points to something that is far (not in the normal data region). Otherwise, if
__far precedes the identifier of the object or function being declared (as in __far x), then the object or
function is far.

The keyword __far can only be applied to function and object names and the indirection (pointer) symbol
*. Parameters to functions may not be declared as __far, since they are always in the normal data region.

These examples illustrate the use of the __far keyword, and assume that the small memory model is being
used.

int __far * ptr;

declares ptr to be a pointer to an integer. The object ptr is near but the integer that it points to is
far.

int * __far fptr;

also declares fptr to be a pointer to an integer. However, the object fptr is far, but the integer
that it points to is near.

int __far * __far ffptr;

declares ffptr to be a pointer (which is far) to an integer (which is far).

52 Pointers

Advanced Types

When declaring a function, placing the keyword __far in front of the function name causes the compiler
to treat the function as being far. It is important, if the function is called before its definition, that a
function prototype be included prior to any calls. For example, the declaration,

extern void __far SystemService();

declares the function SystemService to be far, meaning that any calls to it must be far calls.

Here are a few more examples:

extern struct systbl * __far FSysTblPtr(void);

declares the function FSysTblPtr to be far, returning a pointer to a near systbl structure.

extern struct systbl __far * __far FFSysTblPtr(void);

declares the function FFSysTblPtr to be far, returning a pointer to a far systbl structure.

extern void Indirect(char __far fn());

declares the function Indirect to be near, taking one parameter fn which is a pointer to a far
function that returns a char.

extern int StoreSysTbl(struct systbl * __far sysptr);

is an invalid declaration, since it attempts to declare sysptr to be far. All parameters must be
near, since they reside in the normal data area that is always near.

7.3.2.2 The _ _near Keyword for Open Watcom C32

The __near keyword is a type qualifier that modifies the token that follows it. If __near precedes* (as
in __near *), then the pointer points to something that is near (in the normal data region). Otherwise, if
__near precedes the identifier of the object or function being declared (as in __near x), then the object
or function is near.

The keyword __near can only be applied to function and object names and the indirection (pointer)
symbol *.

For programmers using the small memory model, the __near keyword is not required, but may be useful
for making the program more readable.

7.3.2.3 The _ _far16 and _Seg16 Keywords

With the 80386 processor, a far pointer consists of a 16-bit selector and a 32-bit offset. Open Watcom
C32 also supports a special kind of far pointer which consists of a 16-bit selector and a 16-bit offset. These
pointers, referred to as far16 pointers, allow 32-bit code to access code and data running in 16-bit mode.

In the OS/2 operating system (version 2.0 or higher), the first 512 megabytes of the 4 gigabyte segment
referenced by the DS register is divided into 8192 areas of 64K bytes each. A far16 pointer consists of a
16-bit selector referring to one of the 64K byte areas, and a 16-bit offset into that area.

For compatibility with Microsoft C, Open Watcom C32 provides the __far16 keyword. A pointer
declared as,

Pointers 53

Language Reference

type __far16 * name;

defines an object that is a far16 pointer. If such a pointer is accessed in the 32-bit environment, the
compiler will generate the necessary code to convert between the far16 pointer and a "flat" 32-bit pointer.

For example, the declaration,

char __far16 * bufptr;

declares the object bufptr to be a far16 pointer to char.

A function declared as,

type __far16 func(parm-list);

declares a 16-bit function. Any calls to such a function from the 32-bit environment will cause the
compiler to convert any 32-bit pointer parameters to far16 pointers, and any int parameters from 32 bits
to 16 bits. (In the 16-bit environment, an object of type int is only 16 bits.) Any return value from the
function will have its return value converted in an appropriate manner.

For example, the declaration,

char * __far16 Scan(char * buffer, int buflen, short err);

declares the 16-bit function Scan. When this function is called from the 32-bit environment, the buffer
parameter will be converted from a flat 32-bit pointer to a far16 pointer (which, in the 16-bit environment,
would be declared as char __far *). Thebuflen parameter will be converted from a 32-bit integer
to a 16-bit integer. The err parameter will be passed unchanged. Upon returning, the far16 pointer (far
pointer in the 16-bit environment) will be converted to a 32-bit pointer which describes the equivalent
location in the 32-bit address space.

For compatibility with IBM C Set/2, Open Watcom C32 provides the _Seg16 keyword. Note that
_Seg16 is not interchangeable with __far16.

A pointer declared as,

type * _Seg16 name;

defines an object that is a far16 pointer. Note that the _Seg16 appears on the opposite side of the * than
the __far16 keyword described above.

For example,

char * _Seg16 bufptr;

declares the object bufptr to be a far16 pointer to char (the same as above).

The _Seg16 keyword may not be used to describe a 16-bit function. A #pragma directive must be used.
See the User’s Guide for details. A function declared as,

54 Pointers

Advanced Types

type * _Seg16 func(parm-list);

declares a 32-bit function that returns a far16 pointer.

For example, the declaration,

char * _Seg16 Scan(char * buffer, int buflen, short err);

declares the 32-bit function Scan. No conversion of the parameter list will take place. The return value is
a far16 pointer.

7.3.3 Based Pointers for Open Watcom C16 and C32

Near pointers are generally the most efficient type of pointer because they are small, and the compiler can
assume knowledge about what segment of the computer’s memory the pointer (offset) refers to. Far
pointers are the most flexible because they allow the programmer to access any part of the computer’s
memory, without limitation to a particular segment. However, far pointers are bigger and slower because
of the additional flexibility.

Based pointers are a compromise between the efficiency of near pointers and the flexibility of far pointers.
With based pointers, the programmer takes responsibility to tell the compiler which segment a near pointer
(offset) belongs to, but may still access segments of the computer’s memory outside of the normal data
segment (DGROUP). The result is a pointer type which is as small as and almost as efficient as a near
pointer, but with most of the flexibility of a far pointer.

An object declared as a based pointer falls into one of the following categories:

• the based pointer is in the segment described by another object,
• the based pointer, used as a pointer to another object of the same type (as in a linked list), refers to
the same segment,

• the based pointer is an offset to no particular segment, and must be combined explicitly with a
segment value to produce a valid pointer.

To support based pointers, the following keywords are provided:

__based
__segment
__segname
__self

The following operator is also provided:

:>

These keywords and operator are described in the following sections.

Two macros, defined in <malloc.h> are also provided:

_NULLSEG
_NULLOFF

They are used in a similar manner to NULL, but are used with objects declared as __segment and
__based respectively.

Pointers 55

Language Reference

7.3.3.1 Segment Constant Based Pointers and Objects

A segment constant based pointer or object has its segment value based on a specific, named segment. A
segment constant based object is specified as:

type __based(__segname("segment")) object-name;

and a segment constant based pointer is specified as:

type __based(__segname("segment")) * object-name;

where segment is the name of the segment in which the pointer or object is based. As shown above, the
segment name is always specified as a string. There are three special segment names recognized by the
compiler:

"_CODE"
"_CONST"
"_DATA"

The "_CODE" segment is the default code segment. The "_CONST" segment is the segment containing
constant values. The "_DATA" segment is the default data segment. If the segment name is not one of the
three recognized names, then a segment will be created with that name. If a segment constant based object
is being defined, then it will be placed in the named segment. If a segment constant based pointer is being
defined, then it can point at objects in the named segment.

The following examples illustrate segment constant based pointers and objects:

int __based(__segname("_CODE")) ival = 3;
int __based(__segname("_CODE")) * iptr;

ival is an object that resides in the default code segment. iptr is an object that resides in the data
segment (the usual place for data objects), but points at an integer which resides in the default code
segment. iptr is suitable for pointing at ival.

char __based(__segname("GOODTHINGS")) thing;

thing is an object which resides in the segment GOODTHINGS, which will be created if it does not
already exist. (The creation of segments is done by the linker, and is a method of grouping objects and
functions. Nothing is implicitly created during the execution of the program.)

7.3.3.2 Segment Object Based Pointers

A segment object based pointer derives its segment value from another named object. A segment object
based pointer is specified as follows:

type __based(segment) * name;

where segment is an object defined as type __segment.

An object of type __segment may contain a segment value. Such an object is particularly designed for
use with segment object based pointers.

The following example illustrates a segment object based pointer:

56 Pointers

Advanced Types

__segment seg;
char __based(seg) * cptr;

The object seg contains only a segment value. Whenever the object cptr is used to point to a character,
the actual pointer value will be made up of the segment value found in seg and the offset value found in
cptr. The object seg might be assigned values such as the following:

• a constant value (eg. the segment containing screen memory),
• the result of the library function _bheapseg,
• the segment portion of another pointer value, by casting it to the type __segment.

7.3.3.3 Void Based Pointers

A void based pointer must be explicitly combined with a segment value to produce a reference to a memory
location. A void based pointer does not infer its segment value from another object. The :> (base)
operator is used to combine a segment value and a void based pointer.

For example, on an IBM PC or PS/2 computer, running DOS, with a color monitor, the screen memory
begins at segment 0xB800, offset 0. In a video text mode, to examine the first character currently displayed
on the screen, the following code could be used:

extern void main()

{
__segment screen;
char __based(void) * scrptr;

screen = 0xB800;
scrptr = 0;
printf("Top left character is ’%c’.\n",

*(screen:>scrptr));
}

The general form of the :> operator is:

segment :> offset

where segment is an expression of type __segment, and offset is an expression of type__based(
void) *.

7.3.3.4 Self Based Pointers

A self based pointer infers its segment value from itself. It is particularly useful for structures such as
linked lists, where all of the list elements are in the same segment. A self based pointer pointing to one
element may be used to access the next element, and the compiler will use the same segment as the original
pointer.

The following example illustrates a function which will print the values stored in the last two members of a
linked list:

struct a {

struct a __based(__self) * next;
int number;

};

Pointers 57

Language Reference

extern void PrintLastTwo(struct a far * list)

{
__segment seg;
struct a __based(seg) * aptr;

seg = FP_SEG(list);
aptr = FP_OFF(list);
for(; aptr != _NULLOFF; aptr = aptr->next) {

if(aptr->next == _NULLOFF) {
printf("Last item is %d\n", aptr->number);

} else if(aptr->next->next == _NULLOFF) {
printf("Second last item is %d\n", aptr->number);

}
}

}

The parameter to the function PrintLastTwo is a far pointer, pointing to a linked list structure anywhere
in memory. It is assumed that all members of a particular linked list of this type reside in the same segment
of the computer’s memory. (Another instance of the linked list might reside entirely in a different
segment.) The object seg is given the segment portion of the far pointer. The object aptr is given the
offset portion, and is described as being based in the segment stored in seg.

The expression aptr->next refers to the next member of the structure stored in memory at the offset
stored in aptr and the segment implied by aptr, which is the value stored in seg. So far, the behavior
is no different than if next had been declared as,

struct a * next;

The expression aptr->next->next illustrates the difference of using a self based pointer. The first
part of the expression (aptr->next) occurs as described above. However, using the result to point to the
next member occurs by using the offset value found in the next member and combining it with the
segment value of the pointer used to get to that member, which is still the segment implied by aptr, which
is the value stored in seg. If next had not been declared using __based(__self), then the
second pointing operation would refer to the offset value found in the next member, but with the default
data segment (DGROUP), which may or may not be the same segment as stored in seg.

7.4 Void
The void type has several purposes:

1. To declare an object as being a pointer to no particular type. For example,

void * membegin;

defines membegin as being a pointer. It does not point to anything without a cast operator.
The statement,

*(char *) membegin = ’\0’;

will place a zero in the character at which membegin points.

2. To declare a function as not returning a value. For example,

void rewind(FILE * stream);

declares the standard library function rewind which takes one parameter and returns nothing.

58 Void

Advanced Types

3. To evaluate an expression for its side-effects, discarding the result of the expression. For
example,

(void) getchar();

calls the library function getchar, which normally returns a character. In this case, the
character is discarded, effectively advancing one character in the file without caring what
character is read. This use of void is primarily for readability, because casting the expression
to the void type will be done automatically. The above example could also be written as,

getchar();

The keyword void is also used in one other instance. If a function takes no parameters, void may be
used in the declaration. For example,

int getchar(void);

declares the standard library function getchar, which takes no parameters and returns an integer.

No object (other than a function) may be declared with type void.

7.5 The const and volatile Declarations
An object may be declared with the keyword const. Such an object may not be modified directly by the
program. For objects with static storage duration, this type qualifier describes to the compiler which
objects may be placed in read-only memory, if the computer supports such a concept. It also provides the
opportunity for the compiler to detect attempts to modify the object. The compiler may also generate better
code when it knows that an object will not be modified.

Even though an object is declared to be constant, it is possible to modify its value indirectly by storing its
address (using a cast) in another object declared to be a pointer to the same type (without the const), and
then using the second object to modify the value to which it points. However, this should be done with
caution, and may fail on computers with protected memory.

If the declaration of an object does not include *, that is to say it is not a pointer of any kind, then the
keyword const appearing anywhere in the type specifier (including any typedef’s) indicates that the
object is constant and may not be changed. If the object is a pointer and const appears to the left of the *,
the object is a pointer to a constant value, meaning that the value to which the pointer points may not be
modified, although the pointer value may be changed. If const appears to the right of the *, the object is
a constant pointer to a value, meaning that the pointer to the value may not be changed, although what the
pointer points to may be changed. If const appears on both sides of the *, the object is a constant pointer
to a constant value, meaning that the pointer and the object to which it points may not be changed.

If the declaration of a structure, union or array includes const, then each member of the type, when
referred to, is treated as if const had been specified.

The const and volatile Declarations 59

Language Reference

The declarations,

const int baseyear = 1900;
const int * byptr;

declare the object baseyear to be an integer whose value is constant and set to 1900, and the object
byptr to be a pointer to a constant object of integer type. If byptr was made to point to another integer
that was not, in fact, declared to be constant, then byptr could not be used to modify that value. byptr
may be used to get a value from an integer object, and never to change it. Another way of stating it is that
what byptr points to is constant, but byptr itself is not constant.

The declarations,

int baseyear;
int * const byptr = &baseyear;

declare the object byptr as a constant pointer to an integer, in this case the object baseyear. The value
of baseyear may be modified via byptr, but the value of byptr itself may not be changed. In this
case, byptr itself is constant, but what byptr points to is not constant.

An object may be declared with the keyword volatile. Such an object may be freely modified by the
program, and its value also may be modified through actions outside the program. For example, a flag may
be set when a given interrupt occurs. The keyword volatile indicates to the compiler that care must be
taken when optimizing code referring to the object, so that the meaning of the program is not altered. An
object that the compiler might otherwise have been able to keep in a register for an extended period of time
will be forced to reside in normal storage so that an external change to it will be reflected in the program’s
behavior.

If the declaration of an object does not include *, that is to say it is not a pointer of any kind, then the
keyword volatile appearing anywhere in the type specifier (including any typedef’s) indicates that
the object is volatile and may be changed at any time without the program knowing. If the object is a
pointer and volatile appears to the left of the *, the object is a pointer to a volatile value, meaning that
the value to which the pointer points may be changed at any time. If volatile appears to the right of the
*, the object is a volatile pointer to a value, meaning that the pointer to the value may be changed at any
time. If volatile appears on both the left and the right of the *, the object is a volatile pointer to a
volatile value, meaning that the pointer or the value to which it points may be changed at any time.

If the declaration of a structure, union or array includes volatile, then each member of the type, when
referred to, is treated as if volatile had been specified.

The declarations,

volatile int attncount;
volatile int * acptr;

declare the object attncount to be an integer whose value may be altered at any time (say by an
asynchronous attention handler), and the object acptr to be a pointer to a volatile object of integer type.

If both const and volatile are included in the declaration of an object, then that object may not be
modified by the program, but it may be modified through some external action. An example of such an
object is the clock in a computer, which is modified periodically (every clock "tick"), but programs are not
allowed to change it.

60 The const and volatile Declarations

8 Storage Classes

The storage class of an object describes:

• the duration of the existence of the object. An object may exist throughout the execution of the
program, or only during the span of time that the function in which it is defined is executing. In the
latter case, each time the function is called, a new instance of the object is created, and that object is
destroyed when the function returns.

• the scope of the object. An object may be declared so that it is only accessible within the function in
which it is defined, within the module or throughout the entire program.

A storage class specifier is one of:

auto
register
extern
static
typedef

typedef is included in the list of storage class specifiers for convenience, because the syntax of a type
definition is the same as for an object declaration. A typedef declaration does not create an object, only
a synonym for a type, which does not have a storage class associated with it.

Only one of these keywords (excluding typedef) may be specified in a declaration of an object.

If an object or function is declared with a storage class, but no type specifier, then the type of the object or
function is assumed to be int.

While a storage class specifier may be placed following a type specifier, this tends to be difficult to read. It
is recommended that the storage class (if present) always be placed first in the declaration. The ISO C
standard states that the ability to place the storage class specifier other than at the beginning of the
declaration is an obsolescent feature.

8.1 Type Definitions
A typedef declaration introduces a synonym for another type. It does not introduce a new type.

The general form of a type definition is:

Type Definitions 61

Language Reference

typedef type-information typedef-name;

The typedef-name may be a comma-separated list of identifiers, all of which become synonyms for the
type. The names are in the same name space as ordinary object names, and can be redefined in inner
blocks. However, this can be confusing and should be avoided.

The simple declaration,

typedef signed int COUNTER;

declares the identifier COUNTER to be equivalent to the type signed int. A subsequent declaration
like,

COUNTER ctr;

declares the object ctr to be a signed integer. If, later on, it is necessary to change all counters to be long
signed integers, then only the typedef would have to be changed, as follows:

typedef long signed int COUNTER;

All declarations of objects of that type will use the new type.

The typedef can be used to simplify declarations elsewhere in a program. For example, consider the
following structure:

struct complex {

double real;
double imaginary;

};

To declare an object to be an instance of the structure requires the following declaration:

struct complex cnum;

Now consider the following structure definition with a type definition:

typedef struct {

double real;
double imaginary;

} COMPLEX;

In this case, the identifier COMPLEX refers to the entire structure definition, including the keyword
struct. Therefore, an object can be declared as follows:

COMPLEX cnum;

While this is a simple example, it illustrates a method of making object declarations more readable.

Consider the following example, where the object fnptr is being declared as a pointer to a function which
takes two parameters, a pointer to a structure dim3 and an integer. The function returns a pointer to the
structure dim3. The declarations could appear as follows:

62 Type Definitions

Storage Classes

struct dim3 {

int x;
int y;
int z;

};

struct dim3 * (*fnptr)(struct dim3 *, int);

or as:

typedef struct {

int x;
int y;
int z;

} DIM3;

DIM3 * (*fnptr)(DIM3 *, int);

or as:

typedef struct {

int x;
int y;
int z;

} DIM3;

typedef DIM3 * DIM3FN(DIM3 *, int);

DIM3FN * fnptr;

The last example simply declares fnptr to be a pointer to a DIM3FN, while DIM3FN is declared to be a
function with two parameters, a pointer to a DIM3 and an integer. The function returns a pointer to a
DIM3. DIM3 is declared to be a structure of three co-ordinates.

8.1.1 Compatible Types
Some operations, such as assignment, are restricted to operating on two objects of the same type. If both
operands are already the same type, then no special conversion is required. Otherwise, the compiler may
alter automatically one or both operands to make them the same type. The integral promotions and
arithmetic conversions are examples. Other types may require an explicit cast.

The compiler decides whether or not an explicit cast is required based on the concept of compatible types.
The following types are compatible:

• two types that are declared exactly the same way,

• two types that differ only in the ordering of the type specifiers, for example, unsigned long
int and int long unsigned,

• two arrays of members of compatible type, where both arrays have the same size, or where one array
is declared without size information,

Type Definitions 63

Language Reference

• two functions that return the same type, one containing no parameter information, and the other
containing a fixed number of parameters (no ",...") that are not affected by the default argument
promotions,

• two structures, defined in separate modules, that have the same number and names of members, in
the same order, with compatible types,

• two unions, defined in separate modules, that have the same number and names of members, with
compatible types,

• two enumerated types, defined in separate modules, that have the same number of enumeration
constants, with the same names and the same values,

• two pointers to compatible types.

8.2 Static Storage Duration
An object with static storage duration is created and initialized only once, prior to the execution of the
program. Any value stored in such an object is retained throughout the program unless it is explicitly
altered by the program (or it is declared with the volatile keyword).

Any object that is declared outside the scope of a function has static storage duration.

There are three types of static objects:

1. objects whose values are only available within the function in which they are defined (no
linkage). For example,

extern void Fn(int x)
{

static int ObjCount;
/* ... */
}

2. objects whose values are only available within the module in which they are defined (internal
linkage). For example,

static int ObjCount;

extern void Fn(int x)
{
/* ... */
}

3. objects whose values are available to all components of the program (external linkage). For
example,

extern int ObjCount = { 0 };

extern void Fn(int x)
{
/* ... */
}

64 Static Storage Duration

Storage Classes

The first two types are defined with the keyword static, while the third is defined with the (optional)
keyword extern.

8.2.1 The static Storage Class
Any declaration of an object may be preceded by the keyword static. A declaration inside a function
indicates to the compiler that the object has no linkage, meaning that it is available only within the function.
A declaration not inside any function indicates to the compiler that this object has internal linkage, meaning
that it is available in all functions within the module in which it is defined. Other modules may not refer to
the specific object. They may have their own object defined with the same name, but this is a questionable
programming practice and should be avoided.

The value of the object will be preserved between function calls. Any value placed in an object with static
storage duration will remain unchanged until changed by a function within the same module. It is also
possible for a pointer to the object to be passed to a function outside the module in which the object is
defined. This pointer could be used to modify the value of the object.

8.2.2 The extern Storage Class
If an object is declared with the keyword extern inside a function, then the object has external linkage,
meaning that its value is available to all modules, and to the function(s) containing the definition in the
current module. No initializer list may be specified in this case, which implies that the space for the object
is allocated in some other module.

If an object is declared outside of the definition of a function, and the declaration does not contain either of
the keywords static or extern, then the space for the object is created at this point. The object has
external linkage, meaning that it is available to other modules in the program.

The following examples illustrate the creation of external objects, provided the declarations occur outside
any function:

int X;
float F;

If the declaration for an object, outside of the definition of a function, contains the keyword extern and
has an initializer list, then space for the object is created at this point, and the object has external linkage.
If, however, the declaration does not include an initializer list, then the compiler assumes that the object is
declared elsewhere. If, during the remainder of the compilation of the module, no further declarations of
the object are found, or more declarations with extern and no initializer list are found, then the object
must have space allocated for it in another module. If a subsequent declaration in the same module does
have an initializer list or omits the extern keyword, then the space for the object is created at that point.

The following examples also illustrate the creation of external objects:

extern LIST * ListHead = 0;

int StartVal = 77;

However, the next examples illustrate the tentative definition of external objects. If no further definition of
the object of a form shown above is found, then the object is found outside of the module.

extern LIST * ListEl;
extern int Z;

Static Storage Duration 65

Language Reference

Another module may define its own object with the same name (provided it has static storage class), but it
will not be able to access the external one. However, this can be confusing and is a questionable
programming practice.

Any value placed in an object declared with the extern keyword will remain unchanged until changed by
a function within the same or another module.

A function that is declared without the keyword static has external linkage.

Suppose a module declares an object (outside of any function definition) as follows:

struct list_el * ListTop;

where the structure list_el is defined elsewhere. This declaration allocates space for and declares the
object ListTop to be a pointer to a structure list_el, with external linkage. Another module with the
declaration,

extern struct list_el * ListTop;

refers to the same object ListTop, and states that it is found outside of the module.

Within a program, possibly consisting of more than one module, each object or function with external
linkage must be defined (have space allocated for it) exactly once.

8.3 Automatic Storage Duration
The most commonly used object in a C program is one that has meaning only within the function in which
it is defined. The object is created when execution of the function is begun and destroyed when execution
of the function is completed. Such an object is said to have automatic storage duration. The scope of the
object is said to be the function in which it is defined.

If such an object has the same name as another object defined outside the function (using static or
extern), then the outside object is hidden from the function.

Within a function, any object that does not have its declaration preceded by the keyword static or
extern has automatic storage duration.

It is possible to declare an object as automatic within any block of a function. The scope of such an object
is the block in which it is declared, including any blocks inside it. Any outside block is unable to access
such an object.

Automatic objects may be initialized as described in the chapter "Initialization of Objects". Initialization of
the object only occurs when the block in which the object is declared is entered normally. In particular, a
jump into a block nested within the function will not initialize any objects declared in that block. This is a
questionable programming practice, and should be avoided.

66 Automatic Storage Duration

Storage Classes

The following function checks a string to see if it contains nothing but digits:

extern int IsInt(const char * ptr)
/**********************************/
{

if(*ptr == ’\0’) return(0);
for(;;) {

char ch;

ch = *(ptr++);
if(ch == ’\0’) return(1);
if(!isdigit(ch)) return(0);

}
}

The object ch has a scope consisting only of the for loop. Any statements before or after the loop cannot
access ch.

8.3.1 The auto Storage Class
The declaration of an object in a function that does not contain the keywords static, extern or
register declares an object with automatic storage duration. Such an object may precede its declaration
with the keyword auto for readability.

An object declared with no storage class specifier or with auto is "addressable", which means that the
address-of operator may be applied to it.

The programmer should not assume any relationship between the storage locations of multiple auto
objects declared in a function. If relative placement of objects is important, a structure should be used.

The following function illustrates a use for auto objects:

extern int FindSize(struct thing * thingptr)
/**/
{

auto char * start;
auto char * finish;

FindEnds(thingptr, &start, &finish);
return(finish - start + 1);

}

The addresses of the automatic objects start and finish are passed to FindEnds, which, presumably,
modifies them.

8.3.2 The register Storage Class
An object that is declared within a function, and whose declaration includes the keyword register, is
considered to have automatic storage duration. The register keyword merely provides a hint to the
compiler that this object is going to be heavily used, allowing the compiler to try to put it into a high-speed
access part of the machine, such as a machine register. The compiler may, however, ignore such a directive
for any number of reasons, such as,

Automatic Storage Duration 67

Language Reference

• the compiler does not support objects in registers,
• there are no available registers, or,
• the compiler makes its own decisions about register usage.

Only certain types of objects may be placed in registers, although the set of such types is
implementation-defined.

The Open Watcom C16 and C32 compilers may place any object that is sufficiently small,
including a small structure, in one or more registers.

The compiler will decide which objects will be placed in registers. The register keyword is
ignored, except to prevent taking the address of such an object.

Objects declared with or without register may generally be treated in the same way. An exception to
this rule is that the address-of operator (&) may not be applied to a register object, since registers are
generally not within the normal storage of the computer.

68 Automatic Storage Duration

9 Initialization of Objects

Any definition of an object may include a value or list of values for initializing it, in which case the
declaration is followed by an equal sign (=) and the initial value(s).

The initial value for an object with static storage duration may be any expression that evaluates to a
constant value, including using the address-of operator to take the address of a function or object with static
storage duration.

The initial value for an object with automatic storage duration may be any expression that would be valid as
an assignment to that object, including references to other objects. The evaluations of the initializations
occur in the order in which the definitions of the objects occur.

9.1 Initialization of Scalar Types
The initial value for a scalar type (pointers, integers and floating-point types) may be enclosed in braces,
although braces are not required.

The following declarations might appear inside a function:

static int MaxRecLen = 1000;
static int MaxMemSize = { 1000 * 8 + 10000 };

float Pi = 3.14159;
auto int x = 3;
register int y = x * MaxRecLen;

9.2 Initialization of Arrays
For arrays of characters being initialized with a string literal, and for arrays of wchar_t being initialized
with a wide string literal, the braces around initial values are optional. For other arrays, the braces are
required.

If an array of unknown size is initialized, then the size of the array is determined by the number of
initializing values provided. In particular, an array of characters of unknown size may be initialized using a
string literal, in which case the size of the array is the number of characters in the string, plus one for the
terminating null character. Each character of the string is placed in successive elements of the array.
Consider the following array declarations:

char StartPt[] = "Starting point...";
int Tabs[] = { 1, 9, 17, 25, 33, 41 };
float Roots[] = { 1., 1.414, 1.732, 2., 2.236 };

The object StartPt is an array of 18 characters, Tabs is an array of 6 integers, and Roots is an array of
5 floating-point numbers.

Initialization of Arrays 69

Language Reference

If an array is declared to have a certain number of elements, then the maximum number of values in the
initialization list is the number of elements in the array. An exception is made for arrays of characters,
where the initializer may be a string with the same length as the number of characters in the array. Each
character from the string is assigned to the corresponding element of the array. The null character at the
end of the string literal is ignored.

If there are fewer initialization values than elements of the array, then any elements not receiving a value
from the list are assigned the value zero (for arithmetic types), or the null pointer constant (for pointers).
Consider the following examples:

char Vowels1[6] = "aeiouy";
char Vowels2[6] = { ’a’, ’e’, ’i’, ’o’, ’u’, ’y’ };
int Numbers[10] = { 100, 10, 1 };
float Blort[5] = { 5.6, -2.2 };

The objects Vowels1 and Vowels2 are both arrays of six characters, and both contain exactly the same
values in each of their corresponding elements. The object Numbers is an array of 10 integers, the first
three of which are initialized to 100, 10 and 1, and the remaining seven are set to zero. The object Blort
is an array of 5 floating-point numbers. The first two elements are initialized to 5.6 and -2.2, and the
remaining three are set to zero.

If an array of more than one dimension is initialized, then each subarray may be initialized using a
brace-enclosed list of values. This form will work for an arbitrary number of dimensions. Consider the
following two-dimensional case:

int Box[3][4] = { { 11, 12, 13, 14 },

{ 21, 22, 23, 24 },
{ 31, 32, 33, 34 } };

The object Box is an array of 3 arrays of 4 integers. There are three values in the initialization list,
corresponding to the first dimension (3 rows). Each initialization value is itself a list of values
corresponding to the second dimension (4 columns). In other words, the first list of values { 11, 12,
13, 14 } is assigned to the first row of Box, the second list of values { 21, 22, 23, 24 } is
assigned to the second row of Box, and the third list of values { 31, 32, 33, 34 } is assigned to the
third row of Box.

If all values are supplied for initializing an array, or if only elements from the end of the array are omitted,
then the sub-levels need not be within braces. For example, the following declaration of Box is the same as
above:

int Box[3][4] = { 11, 12, 13, 14,

21, 22, 23, 24,
31, 32, 33, 34 };

The same rules about incomplete initialization lists apply to multi-dimensional arrays. The following
example defines a mathematical 3-by-3 identity matrix:

int Identity[3][3] = { { 1 },

{ 0, 1 },
{ 0, 0, 1 } };

The missing values are replaced with zeroes. The initialization also could have been given as,

int Identity[3][3] = { { 1, 0, 0 },

{ 0, 1, 0 },
{ 0, 0, 1 } };

70 Initialization of Arrays

Initialization of Objects

or as,

int Identity[3][3] = { 1, 0, 0,

0, 1, 0,
0, 0, 1 };

9.3 Initialization of Structures
Structures may be initialized in a manner similar to arrays. The initializer list must be specified within
braces.

For example,

struct printformat {

int pagewid;
char carr_ctl;
char * buffer;

};

char PrBuffer[256];

struct printformat PrtFmt = { 80, ’ ’, PrBuffer };

Each value from the initializer list is assigned to each successive member of the structure. Any unnamed
gaps between members or at the end of the structure (caused by alignment) are ignored during initialization.
If there are more members of the structure than values specified by the initializer list, then the remaining
members are initialized to zero (for arithmetic types) or the null pointer constant (for pointers).

If a structure member is itself an array, structure or union, then the sub-members may be initialized using a
brace-enclosed initializer list. If braces are not specified, then for the purposes of initialization, the
sub-members are treated as if they are members of the outer structure, as each subsequent initializer value
initializes a sub-member, until no more sub-members are found, in which case the next member of the outer
structure is initialized.

9.4 Initialization of Unions
Initializations of unions is the same as for structures, except that only the first member of the union may be
initialized, using a brace-enclosed initializer.

Consider the following example:

struct first3 {

char first, second, third;
};

union ustr {
char string[20];
struct first3 firstthree;

};
union ustr Str = { "Hello there" };

Initialization of Unions 71

Language Reference

The object Str is declared to be a union of two types, the first of which is an array of 20 characters, and
the second of which is a structure that allows direct access to the first three characters of the string
contained in the array. The array is initialized to the string "Hello there". The three characters of
struct first3 will have the characters ’H’, ’e’ and ’l’. Had the declaration of ustr been,

union ustr {

struct first3 firstthree;
char string[20];

};

then the initialization could only set the first three characters.

9.5 Uninitialized Objects
An object with static storage duration, and no explicit initialization, will be initialized as if every member
that has arithmetic type was assigned zero and every member that has a pointer type was assigned a null
(zero) pointer.

An object with automatic storage duration, and no explicit initialization, is not initialized. Hence, a
reference to such an automatic object that has not been assigned a value will yield undefined behavior. On
most systems, the value of the object will be arbitrary and unpredictable.

72 Uninitialized Objects

10 Expressions

An expression is a sequence of operators and operands that describes how to,

• calculate a value (eg. addition)
• create side-effects (eg. assignment, increment)

or both.

The order of execution of the expression is usually determined by a mixture of,

1. parentheses (), which indicate to the compiler the desired grouping of operations,

2. the precedence of operators, which describes the relative priority of operators in the absence of
parentheses,

3. the common algebraic ordering,

4. the associativity of operators.

In most other cases, the order of execution is determined by the compiler and may not be relied upon.
Exceptions to this rule are described in the relevant section. Most users will find that the order of execution
is well-defined and intuitive. However, when in doubt, use parentheses.

The table below summarizes the levels of precedence in expressions.

Operations at a higher level in the table will occur before those below. All operators involving more than
one operand associate from left to right, except for the conditional and assignment operators, which
associate from right to left. Operations at the same level, except where discussed in the relevant section,
may be executed in any order that the compiler chooses (subject to the usual algebraic rules). In particular,
the compiler may regroup sub-expressions that are both associative and commutative in order to improve
the efficiency of the code, provided the meaning (i.e. types and results) of the operands and result are not
affected by the regrouping.

The order of any side-effects (for example, assignment, or action taken by a function call) is also subject to
alteration by the compiler.

An exception occurs when the operands for an operator are invalid. For example, division by zero may
cause an exception. If an exception occurs, the behavior is undefined. If an exception is a possibility, the
program should be prepared to handle it.

In the following sections, a formal syntax is used to describe each level in the precedence table. This
syntax is used in order to completely describe the relationships between the various levels.

Expressions 73

Language Reference

Expression Type Operators

primary identifier constant
string (expression)

postfix a[b] f()
a.b a->b a++ a--

unary sizeof u sizeof(a)
++a --a &a *a
+a -a ~a !a

cast (type) a

multiplicative a * b a / b a % b

additive a + b a - b

shift a << b a >> b

relational a < b a > b a <= b a >= b

equality a == b a != b

bitwise AND a & b

bitwise exclusive OR a ^ b

bitwise inclusive OR a | b

logical AND a && b

logical OR a || b

conditional † a ? b : c

assignment † a = b a += b a -= b a *= b
a /= b a %= b a &= b a ^= b
a |= b a <<= b a >>= b

comma a,b

† associates from right to left

10.1 Lvalues
In order to understand certain components of expressions, it is important to understand the term lvalue.

An lvalue is an expression that designates an object. The simplest form of lvalue is an identifier which is
an object (for example, an integer).

74 Lvalues

Expressions

The type of the expression may not be void or a function. The term lvalue is derived from left value,
which refers to the fact that an lvalue is typically on the left side of an assignment expression.

If ptr is a pointer to a type other than void or a function, then both ptr and *ptr are lvalues.

A modifiable lvalue is an lvalue whose type is not an array or an incomplete type, whose declaration does
not contain the keyword const, and, if it is a structure or union, then none of its members contains the
keyword const.

10.2 Primary Expressions
primary-expression:

identifier
or

constant
or

string-literal
or

(expression)

A primary expression is the simplest part of an expression. It consists of one of the following:

identifier An identifier that designates a function is called a function designator. An identifier that
designates an object is an lvalue.

constant A constant is a primary expression whose type depends on its form. See "Constants".

string-literal A string literal is a primary expression whose type is "array of char". A string literal is
also an lvalue (but is not modifiable).

expression inside parentheses
The type and value of a parenthesized expression are the same as for the expression without
parentheses. It may be an lvalue, function designator or void expression.

Given these declarations,

int count;
int * ctrptr;
int f(int);
int g(int);

the following are all valid primary expressions:

count
3
3.2
’a’
"Hello there"
(count + 3)
(*(ctrptr+1))
(f(++i) * g(j++))

Primary Expressions 75

Language Reference

10.3 Postfix Operators
postfix-expression:

primary-expression
or

array-subscripting-expression
or

function-call-expression
or

member-designator-expression
or

post-increment-expression
or

post-decrement-expression

10.3.1 Array Subscripting
array-subscripting-expression:

postfix-expression[expression]

The general form for array subscripting is,

array[index]

where array must have the type "array of type" or "pointer to type", and index must have an integral
type. The result has type "type".

array[index] is equivalent to (*(array+index)), or the index-th element of the array array,
where the first element is numbered zero. Note that index is scaled automatically to account for the size
of the elements of array.

An alternate form for array subscripting is,

index[array]

although this form is not commonly used.

10.3.2 Function Calls
function-call-expression:

postfix-expression()
or
postfix-expression (argument-expression-list)

argument-expression-list:
one or more assignment-expressions separated by commas

A postfix-expression followed by parentheses containing zero or more comma-separated expressions is a
function-call-expression. The postfix-expression denotes the function to be called, and must evaluate to a
pointer to a function. The simplest form of this expression is an identifier which is the name of a function.
For example, Fn() calls the function Fn.

76 Postfix Operators

Expressions

The expressions within the parentheses denote the arguments to the function. If a function prototype has
been declared, then the number of arguments must match the parameter list in the prototype, and the
arguments are converted to the types specified in the prototype.

If the postfix-expression is simply an identifier, and no function prototype declaration for that identifier is
in scope, then an implicit,

extern int identifier();

declaration is placed in the innermost block containing the function call. This declares the function as
having external linkage, no information about its parameters is available, and the function returns an
integer.

The expressions are evaluated (in an undefined order) and the values assigned to the parameters for the
function. All arguments are passed by value, allowing the function to modify its parameters without
affecting the arguments used to create the parameters. However, an argument can be a pointer to an object,
in which case the function may modify the object to which the pointer points.

If a function prototype is in scope at both a call to a function and its definition (and if the prototypes are the
same), then the compiler will ensure that the required number and type of parameters are present.

If no function prototype is in scope at a call to a function, then the default argument promotions are
performed. (Integral types such as char and short int are converted to int, while float values are
converted to double.) When the function definition is encountered, if the parameter types do not match
the default argument promotions, then the behavior is undefined. (Usually, the parameters to the function
will receive incorrect values.)

If a function prototype has been declared at a call to a function, then each argument is converted, as if by
assignment, to the type of the corresponding parameter. When the function definition is encountered, if the
types of the parameters do not match the types of the parameters in the function prototype, the behavior is
undefined.

If the ellipsis (,...) notation is used in a function prototype, then those arguments in a function call that
correspond to the ellipsis have only the default argument promotions performed on them. (See the chapter
"Functions" for a complete description of the ellipsis notation.)

Function calls may be recursive. Functions may call themselves either directly, or via other functions.

The following are some examples of function calls:

putchar(’x’);
chr = getchar();
valid = isdigit(chr);
printf("chr = %c, valid = %2x\n", chr, valid);
fnptr = &MyFunction;
(*fnptr)(parm1, parm2);
fnptr(parm1, parm2);

10.3.3 Structure and Union Members

Postfix Operators 77

Language Reference

member-designator-expression:
postfix-expression . identifier

or
postfix-expression->identifier

The first operand of the . operator must be an object with a structure or union type. The second operand
must be the name of a member of that type. The result is the value of the member, and is an lvalue if the
first operand is also an lvalue.

The first operand of the -> operator must be a pointer to an object with a structure or union type. The
second operand must be the name of a member of that type. The result is the value of the member of the
structure or union to which the first expression points, and is an lvalue.

10.3.4 Post-Increment and Post-Decrement
post-increment-expression:

postfix-expression++

post-decrement-expression:
postfix-expression--

The operand of post-increment and post-decrement must be a modifiable lvalue, and a scalar (not a
structure, union or array).

The effect of the operation is that the operand is incremented or decremented by 1, adjusted for the type of
the operand. For example, if the operand is declared to be a "pointer to type", then the increment or
decrement will be by the value sizeof(type).

The result of both post-increment and post-decrement (if it is just a subexpression of a larger expression) is
the original, unmodified value of the operand. In other words, the original value of the operand is used in
the expression, and then it is incremented or decremented. Whether the operand is incremented
immediately after use or after completion of execution of the expression is undefined. Consider the
statements,

int i = 2;
int j;

j = (i++) + (i++);

Depending on the compiler, j may get the value 4 or 5. If the increments are delayed until after the
expression is evaluated, j gets the value 2 + 2. If the increment of i happens immediately after its
value is retrieved, then j gets the value 2 + 3.

To avoid ambiguity, the above expression could be written as:

j = i + i;
i += 2;

78 Postfix Operators

Expressions

10.4 Unary Operators
unary-expression:

postfix-expression
or

pre-increment-expression
or

pre-decrement-expression
or

unary-operator cast-expression
or

sizeof-expression

unary-operator: one of
& * + - ~ !

10.4.1 Pre-Increment and Pre-Decrement Operators
pre-increment-expression:
++ unary-expression

pre-decrement-expression:
-- unary-expression

The operand of the pre-increment and pre-decrement operators must be a modifiable lvalue, and a scalar
(not a structure, union or array).

The operand is incremented or decremented by 1, adjusted for the type of the operand. For example, if the
operand is declared to be a "pointer to type", then the increment or decrement will be by the value
sizeof(type).

The expression ++obj is equivalent to (obj += 1), while --obj is equivalent to (obj -= 1).

10.4.2 Address-of and Indirection Operators
unary-expression:
& cast-expression

or
* cast-expression

The unary & symbol denotes the address-of operator. Its operand must designate a function or an array, or
be an lvalue that designates an object that is not a bit-field and is not declared with the register
storage-class specifier. If the type of the operand is "type", then the type of the result is "pointer to type"
and the result is the address of the operand.

If the type of the operand is "array of type", then the type of the result is "pointer to type" and the result is
the address of the first element of the array.

The * symbol, in its unary form, denotes the indirection or pointer operator. Its operand must be a pointer
type, except that it may not be a pointer to void. If the operand is a "pointer to type", then the type of the
result is "type", and the result is the object to which the operand points.

Unary Operators 79

Language Reference

No checking is performed to ensure that the value of the pointer is valid. If an invalid pointer value is used,
the behavior of * is undefined.

Examples:

int counter;
int * ctrptr;
void (*fnptr)(int, int *);

ctrptr = &counter;
*ctrptr = 3;

fnptr = FnRetVoid;
fnptr(*ctrptr, &counter);

10.4.3 Unary Arithmetic Operators
unary-expression:
+ cast-expression

or
- cast-expression

or
~ cast-expression

or
! cast-expression

The + symbol, in its unary form, simply returns the value of its operand. The type of its operand must be
an arithmetic type (character, integer or floating-point). Integral promotion is performed on the operand,
and the result has the promoted type.

The - symbol, in its unary form, is the negation or negative operator. The type of its operand must be an
arithmetic type (character, integer or floating-point). The result is the negative of the operand. Integral
promotion is performed on the operand, and the result has the promoted type. The expression -obj is
equivalent to (0-obj).

The ~ symbol is the bitwise complement, 1’s complement or bitwise not operator. The type of the operand
must be an integral type, and integral promotion is performed on the operand. The type of the result is the
type of the promoted operand. Each bit of the result is the complement of the corresponding bit in the
operand, effectively turning 0 bits to 1, and 1 bits to 0.

The ! symbol is the logical not operator. Its operand must be a scalar type (not a structure, union or
array). The result type is int. If the operand has the value zero, then the result value is 1. If the operand
has some other value, then the result is 0.

10.4.4 The sizeof Operator

80 Unary Operators

Expressions

sizeof-expression:
sizeof unary-expression

or
sizeof(type-name)

The sizeof operator gives the size (in bytes) of its operand. The operand may be an expression, or a type
in parentheses. In either case, the type must not be a function, bit-field or incomplete type (such as void,
or an array that has not had its length declared).

Note that an expression operand to sizeof is not evaluated. The expression is examined to determine the
result type, from which the size is determined.

If the operand has a character type, then the result is 1.

If the type is a structure or union, then the result is the total number of bytes in the structure or union,
including any internal or trailing padding included by the compiler for alignment purposes. The size of a
structure can be greater than the sum of the sizes of its members.

If the type is an array, then the result is the total number of bytes in the array, unless the operand is a
parameter in the function definition enclosing the current block, in which case the result is the size of a
pointer.

The type of the result of the sizeof operator is implementation-defined, but it is an unsigned integer type,
and is represented by size_t in the <stddef.h> header.

For the Open Watcom C16 and C32 compilers, the macro size_t is unsigned int.

Example:

struct s {

struct s * next;
int obj1;
int obj2;

};

static struct s * SAllocAndFill(const struct s * def_s)
/***/
{

struct s * sptr;

sptr = malloc(sizeof(struct s));
if(sptr != NULL) {

memcpy(sptr, def_s, sizeof(struct s));
}
return(sptr);

}

The function SAllocAndFill receives a pointer to a struct s. It allocates such a structure, and
copies the contents of the structure pointed to by def_s into the allocated memory. A pointer to the
allocated structure is returned.

The library function malloc takes the number of bytes to allocate as a parameter and sizeof(struct
s) provides that value. The library function memcpy also takes, as the third parameter, the number of
bytes to copy and again sizeof(struct s) provides that value.

Unary Operators 81

Language Reference

10.5 Cast Operator
cast-expression:

unary-expression
or

(type-name) cast-expression

When an expression is preceded by a type name in parentheses, the value of the expression is converted to
the named type. This is called a cast. Both the type name and the operand type must be scalar (not a
structure, union or array), unless the type name is void. If the type name is void, the operand type must
be a complete type (not an array of unknown size, or a structure or union that has not yet been defined).

A cast does not yield an lvalue.

Pointers may be freely converted from "pointer to void" to any other pointer type without using an
explicit cast operator. Pointers also may be converted from any pointer type to "pointer to void".

A pointer may be converted to a pointer to another type. However, the pointer may be invalid if the
resulting pointer is not properly aligned for the type. Converting a pointer to a pointer to a type with less
strict alignment, and back again, will yield the same pointer. However, converting it to a pointer to a type
with more strict alignment, and back again, may yield a different pointer. On many computers, where
alignment is not required (but may improve performance), conversion of pointers may take place freely.

With Open Watcom C16 and C32, alignment of integers, pointers and floating-point numbers is
not required, so the compiler does not do any alignment. However, aligning these types may make
a program run slightly faster.

A command line switch may be used to force the compiler to do alignment on all structures.

A pointer to a function may be converted to a pointer to a different type of function, and back again. The
resulting pointer will be the same as the original pointer.

If a pointer is converted to a pointer to a different type of function, and a call is made using that pointer, the
behavior is undefined.

A pointer may be converted to an integral type. The type of integer required to hold the value of the pointer
is implementation-defined. If the integer is not large enough to fully contain the value, then the behavior is
undefined.

An integer may be converted to a pointer. The result is implementation-defined.

With Open Watcom C16, for the purposes of conversion between pointers and integers, __near
pointers are treated as unsigned int. __far and__huge pointers are treated asunsigned
long int, with the pointer’s segment value in the high-order (most significant) two bytes. All
the usual integer conversion rules then apply. Note that huge pointers are not normalized in any
way.

82 Cast Operator

Expressions

With Open Watcom C32, for the purposes of conversion between pointers and integers, __near
pointers are treated as unsigned int. __far16 and_Seg16 pointers are also treated as
unsigned int, with the pointer’s segment value in the high-order (most significant) two bytes.
All the usual integer conversion rules then apply. Note that __far pointers may not be converted
to an integer without losing the segment information.

10.6 Multiplicative Operators
multiplicative-expression:

cast-expression
or
multiplicative-expression * cast-expression
or
multiplicative-expression / cast-expression
or
multiplicative-expression % cast-expression

The * symbol, in its binary form, yields the product of its operands. The operands must have arithmetic
type, and have the usual arithmetic conversions performed on them.

The / symbol yields the quotient from the division of the first operand by the second operand. The
operands must have arithmetic type, and have the usual arithmetic conversions performed on them. Note
that when a division by zero occurs, the behavior is undefined.

When both operands of / are of integer type and positive value, and the division is inexact, the result is the
largest integer less than the algebraic (exact) quotient. (The result is rounded down.)

When one or both operands of / is negative and the division is inexact, whether the compiler rounds the
value up or down is implementation-defined.

The Open Watcom C16 and C32 compilers always round the result of integer division toward
zero. This action is also called truncation.

The % symbol yields the remainder from the division of the first operand by the second operand. The
operands of % must have integral type.

When both operands of % are positive, the result is a positive value smaller than the second operand. When
one or both operands is negative, whether the result is positive or negative is implementation-defined.

With the Open Watcom C16 and C32 compiler, the remainder has the same sign as the first
operand.

For integral types a and b, if b is not zero, then (a/b)*b + a%b will equal a.

Multiplicative Operators 83

Language Reference

10.7 Additive Operators
additive-expression:

multiplicative-expression
or

additive-expression + multiplicative-expression
or

additive-expression - multiplicative-expression

The + symbol, in its binary form, denotes the sum of its operands.

If both operands have arithmetic type, then the usual arithmetic conversions are performed on them.

If one of the operands is a pointer, then the other operand must have an integral type. The pointer operand
may not be a pointer to void. Before being added to the pointer value, the integral value is multiplied by
the size of the object to which the pointer points. The result type is the same as the pointer operand type. If
the pointer value is a pointer to a member of an array, then the resulting pointer will point to a member of
the same array, provided the array is large enough. If the resulting pointer does not point to a member of
the array, then its use with the unary * (indirection) or -> (arrow) operator will yield undefined behavior.

The - symbol, in its binary form, denotes the difference resulting from the subtraction of the second
operand from the first. If both operands have arithmetic type, then the usual arithmetic conversions are
performed on them.

If the first operand is a pointer, then the second operand must either be a pointer to the same type or an
integral type.

In the same manner as for adding a pointer and an integral value, the integral value is multiplied by the size
of the object to which the pointer points. The pointer operand may not be a pointer to void. The result
type is the same type as the pointer operand.

If both operands are pointers to the same type, the difference is divided by the size of the type, representing
the difference of the subscripts of the two array members (assuming the type is "array of type"). The type
of the result is implementation-defined, and is represented by ptrdiff_t (a signed integral type) defined
in the <stddef.h> header.

With Open Watcom C16 and C32, ptrdiff_t is int, unless the huge memory model is being
used, in which case ptrdiff_t is long int.

10.8 Bitwise Shift Operators
shift-expression:

additive-expression
or
shift-expression << additive-expression
or
shift-expression >> additive-expression

The << symbol denotes the left-shift operator. Both operands must have an integral type, and the integral
promotions are performed on them. The type of the result is the type of the promoted left operand.

84 Bitwise Shift Operators

Expressions

The result of op << amt is op left-shifted amt bit positions. Zero bits are filled on the right.
Effectively, the high bits shifted out of op are discarded, and the resulting set of bits is re-interpreted as the
result. Another interpretation is that op is multiplied by 2 raised to the power amt.

The >> symbol denotes the right-shift operator. Both operands must have an integral type, and the integral
promotions are performed on them. The type of the result is the type of the promoted left operand.

The result of op >> amt is op right-shifted amt bit positions. If op has an unsigned type, or a signed
type and a non-negative value, then op is divided by 2 raised to the power amt. Effectively, the low bits
shifted out of op are discarded, zero bits are filled on the left, and the resulting set of bits is re-interpreted
as the result.

If op has a signed type and negative value, then the behavior of op >> amt is implementation-defined.
Usually, the high bits vacated by the right shift are filled with the sign bit from before the shift (arithmetic
right shift), or with 0 (logical right shift).

With Open Watcom C16 and C32, a right shift of a negative value of a signed type causes the sign
bit to be propogated throughout the bits vacated by the shift. Essentially, the vacated bits are filled
with 1 bits.

For both bitwise shift operators, if the number of bits to shift exceeds the number of bits in the type, the
result is undefined.

10.9 Relational Operators
relational-expression:

shift-expression
or
relational-expression < shift-expression
or
relational-expression > shift-expression
or
relational-expression <= shift-expression
or
relational-expression >= shift-expression

Each of the symbols < (less than), > (greater than), <= (less than or equal to), >= (greater than or equal
to), yields the value 1 if the relation is true, and 0 if the relation is false. The result type is int.

If both operands have arithmetic type, then the usual arithmetic conversions are performed on them.

If one of the operands is a pointer, then the other operand must be a pointer to a compatible type. The
result depends on where (in the address space of the computer) the pointers actually point.

If both pointers point to members of the same array object, then the pointer that points to the member with a
higher subscript will be greater than the other pointer.

If both pointers point to different members within the same structure, then the pointer pointing to the
member declared later in the structure will be greater than the other pointer.

If both pointers point to the same union object, then they will be equal.

Relational Operators 85

Language Reference

All other comparisons yield undefined behavior. As discussed above, the relationship between pointers is
determined by the locations in the machine storage that the pointers reference. Typically, the numeric
values of the pointer operands are compared.

10.10 Equality Operators
equality-expression:

relational-expression
or
equality-expression == relational-expression
or
equality-expression != relational-expression

The symbols == (equal to) and != (not equal to) yield the value 1 if the relation is true, and 0 if the relation
is false. The result type is int.

If both operands have arithmetic type, then the usual arithmetic conversions are performed on them.

If both operands are pointers to the same type and they compare equal, then they are pointers to the same
object.

If both operands are pointers and one is a pointer to void, then the other is converted to a pointer to void.

If one of the operands is a pointer, the other may be a null pointer constant (zero).

No other combinations are valid.

10.11 Bitwise AND Operator
and-expression:

equality-expression
or
and-expression & equality-expression

The & symbol, in its binary form, denotes the bitwise AND operator. Each of the operands must have
integral type, and the usual arithmetic conversions are performed.

The result is the bitwise AND of the two operands. That is, the bit in the result is set if and only if each of
the corresponding bits in the operands are set.

The following table illustrates some bitwise AND operations:

Operation Result

0x0000 & 0x7A4C 0x0000
0xFFFF & 0x7A4C 0x7A4C
0x1001 & 0x0001 0x0001
0x29F4 & 0xE372 0x2170

86 Bitwise AND Operator

Expressions

10.12 Bitwise Exclusive OR Operator
exclusive-or-expression:

and-expression
or
exclusive-or-expression ^ and-expression

The ^ symbol denotes the bitwise exclusive OR operator. Each of the operands must have integral type, and
the usual arithmetic conversions are performed.

The result is the bitwise exclusive OR of the two operands. That is, the bit in the result is set if and only if
exactly one of the corresponding bits in the operands is set.

Another interpretation is that, if one of the operands is treated as a mask, then every 1 bit in the mask
causes the corresponding bit in the other operand to be complemented (0 becomes 1, 1 becomes 0) before
being placed in the result, while every 0 bit in the mask causes the corresponding bit in the other operand to
be placed unchanged in the result.

The following table illustrates some exclusive OR operations:

Operation Result

0x0000 ^ 0x7A4C 0x7A4C
0xFFFF ^ 0x7A4C 0x85B3
0xFFFF ^ 0x85B3 0x7A4C
0x1001 ^ 0x0001 0x1000
0x29F4 ^ 0xE372 0xCA86

10.13 Bitwise Inclusive OR Operator
inclusive-or-expression:

exclusive-or-expression
or
inclusive-or-expression | exclusive-or-expression

The | symbol denotes the bitwise inclusive OR operator. Each of the operands must have integral type, and
the usual arithmetic conversions are performed.

The result is the bitwise inclusive OR of the two operands. That is, the bit in the result is set if at least one
of the corresponding bits in the operands is set.

The following table illustrates some inclusive OR operations:

Bitwise Inclusive OR Operator 87

Language Reference

Operation Result

0x0000 | 0x7A4C 0x7A4C
0xFFFF | 0x7A4C 0xFFFF
0x1100 | 0x0022 0x1122
0x29F4 | 0xE372 0xEBF6

10.14 Logical AND Operator
logical-and-expression:

inclusive-or-expression
or
logical-and-expression && inclusive-or-expression

The && symbol denotes the logical AND operator. Each of the operands must have scalar type.

If both of the operands are not equal to zero, then the result is 1. Otherwise, the result is zero. The result
type is int.

If the first operand is zero, then the second operand is not evaluated. Any side effects that would have
happened if the second operand had been executed do not happen. Any function calls encountered in the
second operand do not take place.

10.15 Logical OR Operator
logical-or-expression:

logical-and-expression
or
logical-or-expression || logical-and-expression

The || symbol denotes the logical OR operator. Each of the operands must have scalar type.

If one or both of the operands is not equal to zero, then the result is 1. Otherwise, the result is zero (both
operands are zero). The result type is int.

If the first operand is not zero, then the second operand is not evaluated. Any side effects that would have
happened if the second operand had been executed do not happen. Any function calls encountered in the
second operand do not take place.

10.16 Conditional Operator
conditional-expression:

logical-or-expression
or
logical-or-expression ? expression : conditional-expression

88 Conditional Operator

Expressions

The ? symbol separates the first two parts of a conditional operator, and the : symbol separates the
second and third parts. The first operand must have a scalar type (not a structure, union or array).

The first operand is evaluated. If its value is not equal to zero, then the second operand is evaluated and its
value is the result. Otherwise, the third operand is evaluated and its value is the result.

Whichever operand is evaluated, the other is not evaluated. Any side effects that might have happened
during the evaluation of the other operand do not happen.

If both the second and third operands have arithmetic type, then the usual arithmetic conversions are
performed on them, and the type of the result is the same type as the converted operands.

If both operands have the same structure, union or pointer type, then the result has that type.

If both operands are pointers, and one is "pointer to void", then the result type is "pointer to void".

If one operand is a pointer, and the other is a null pointer constant (0), the result type is that of the pointer.

If both operands are void expressions, then the result is a void expression.

No other combinations of result types are permitted.

Note that, unlike most other operators, the conditional operator associates from right to left. For example,
the expression,

a = b ? c : d ? e : f;

is translated as if it had been parenthesized as follows:

a = b ? c : (d ? e : f);

This construct is confusing, and so should probably be avoided.

10.17 Assignment Operators
assignment-expression:

conditional-expression
or

simple-assignment-expression
or

compound-assignment-expression

An assignment operator stores a value in the object designated by the left operand. The left operand must
be a modifiable lvalue.

The result type and value are those of the left operand after the assignment.

Whether the left or right operand is evaluated first is undefined.

Note that, unlike most other operators, the assignment operators associate from right to left. For example,
the expression,

a += b = c;

Assignment Operators 89

Language Reference

is translated as if it had been bracketed as follows:

a += (b = c);

10.17.1 Simple Assignment
simple-assignment-operator:

unary-expression = assignment-expression

The = symbol denotes simple assignment. The value of the right operand is converted to the type of the left
operand and replaces the value designated by the left operand.

The two operands must obey one of the following rules,

• both have arithmetic types,

• both have the same structure or union type, or the right operand differs only in the presence of the
const or volatile keywords,

• both are pointers to the same type,

• both are pointers and one is a pointer to void,

• the left operand is a pointer, and the right is a null pointer constant (0).

10.17.2 Compound Assignment
compound-assignment-expression:

unary-expression assignment-operator assignment-expression

assignment-operator: one of
+= -=
*= /= %=
&= ^= |=
<<= >>=

A compound assignment operator of the form a op= b is equivalent to the simple assignment expression
a = a op (b), except that the left operand a is evaluated only once.

The compound assignment operator must have operands consistent with those allowed by the
corresponding binary operator.

10.18 Comma Operator
expression:

assignment-expression
or

expression, assignment-expression

90 Comma Operator

Expressions

At the lowest precedence, the comma operator evaluates the left operand as a void expression (it is
evaluated and its result, if any, is discarded), and then evaluates the right operand. The result has the type
and value of the second operand.

In contexts where the comma is also used as a separator (function argument lists and initializer lists), a
comma expression must be placed in parentheses.

For example,

Fn((pi=3.14159,two_pi=2*pi));

the function Fn has one parameter, which has the value 2 times pi.

for(i = 0, j = 0, k = 0;; i++, j++, k++)
statement;

The for statement allows three expressions. In this example, the first expression initializes three objects
and the third expression increments the three objects.

10.19 Constant Expressions
A constant expression may be specified in several places:

• the size of a bit-field member of a structure,
• the value of an enumeration constant,
• an initializer list,
• the number of elements in an array,
• the value of a case label constant,
• with the #if and #elif preprocessor directives.

In most cases, a constant expression consists of a series of constant values and operations that evaluate to a
constant value. Certain operations may only appear within the operand of the sizeof operator. These
include:

• a function call,
• pre- or post-increment or decrement,
• assignment,
• comma operator,
• array subscripting,
• the . and, -> operators (structure member access),
• the unary & (address-of) operator (see exception below),
• the unary * (indirection) operator,
• casts to a type other than an integer type.

In a constant expression that is an initializer, floating-point constants and casts may be specified. Objects
that have static storage duration, and function designators (names), may be used to provide addresses, either
explicitly using the unary & (address-of) operator, or implicitly by specifying the identifier only.

The following examples illustrate constant expressions that may be used anywhere:

3
256*3 + 27
OPSYS == OS_DOS /* These are macro names */

Constant Expressions 91

Language Reference

The next set of examples are constant expressions that are only valid in an initializer:

&SomeObject
SomeFunction
3.5 * 7.2 / 6.5

In a constant expression that is part of a #if or #elif preprocessor directive, only integral constants and
operators are permitted (and macros that, when replaced, follow these same rules).

92 Constant Expressions

11 Statements

A statement describes what actions are to be performed. Statements may only be placed inside functions.
Statements are executed in sequence, except where described below.

11.1 Labelled Statements
Any statement may be preceded by a label. Labelled statements are usually the target of a goto statement,
and hence occur infrequently.

A label is an identifier followed by a colon. Labels do not affect the flow of execution of a program. A
label that is encountered during execution is ignored.

The following example illustrates a statement with a label:

xyz: i = 0;

Labels can only precede statements. It follows that labels may only appear inside functions.

A label may be defined only once within any particular function.

The identifier used for a label may be the same as another identifier for an object, function or tag, or a label
in another function. The name space for labels is separate from non-label identifiers, and each function has
its own label name space.

11.2 Compound Statements
A compound statement is a set of statements grouped together inside braces. It may have its own
declarations of objects, with or without initializations, and may or may not have any executable statements.
A compound statement is also called a block.

The general form of a compound statement is:

{ declaration-list statement-list }

where declaration-list is a list of zero or more declarations of objects to be used in the block. statement-list
is a list of zero or more statements to be executed when the block is entered.

Any declarations for objects that have automatic storage duration and initializers for them are evaluated in
the order in which they occur.

An object declared with the keyword extern inside a block may not be initialized in the declaration, since
the storage for that object is defined elsewhere.

An object declared in a block, without the keyword extern, may not be redeclared within the same block,
except in a block contained within the current block.

Compound Statements 93

Language Reference

11.3 Expression Statements
A statement that is an expression is evaluated as a void expression for its side effects, such as the assigning
of a value with the assignment operator. The result of the expression is discarded. This discarding may be
made explicit by casting the expression as a void.

For example, the statement,

count = 3;

consists of the expression count = 3, which has the side effect of assigning the value 3 to the object
count. The result of the expression is 3, with the type the same as the type of count. The result is not
used any further. As another example, the statement,

(void) memcpy(dest, src, len);

indicates that, regardless of the fact that memcpy returns a result, the result should be ignored. However, it
is equally valid, and quite common, to write,

memcpy(dest, src, len);

As a matter of programming style, casting an expression as void should only be done when the result of
the expression might normally be expected to be used further. In this case, casting to void indicates that
the result was intentionally discarded and is not an error of omission.

11.4 Null Statements
A null statement, which is just a semi-colon, takes no action. It is useful for placing a label just before a
block-closing brace, or for indicating an empty block, such as in an iteration statement. Consider the
following examples of null statements:

{

gets(buffer);
while(*buffer++ != ’\0’)

;
/* ... */
endblk: ;

}

The while iteration statement skips over characters in buffer until the null character is found. The
body of the iteration is empty, since the controlling expression does all of the work. The endblk:
declares a label just before the final }, which might be used by a goto to exit the block.

11.5 Selection Statements
A selection statement evaluates an expression, called the controlling expression, then based on the result
selects from a set of statements. These statements are then executed.

94 Selection Statements

Statements

11.5.1 The if Statement
if(expression) statement
or
if(expression) statement else statement

In both cases, the type of the controlling expression (inside the parentheses) is a scalar type (not a structure,
union or array). If the controlling expression evaluates to a non-zero value, then the first statement is
executed.

In the second form, the else is executed if the controlling expression evaluates to zero.

Each statement may be a compound statement. For example,

if(delay > 5) {

printf("Waited too long\n");
ok = FALSE;

} else {
ok = TRUE;

}

In the classic case of the dangling else, the else is bound to the nearest if that does not yet have an
else. For example,

if(x > 0)

if(y > 0)
printf("x > 0 && y > 0\n");

else
printf("x <= 0\n");

will print x <= 0 when x > 0 is true and y > 0 is false, because the else is bound to the second if,
not the first. To correct this example, it would have to be changed to,

if(x > 0) {

if(y > 0)
printf("x > 0 && y > 0\n");

} else
printf("x <= 0\n");

This example illustrates why it is a good idea to always use braces to explicitly state the subject of the
control structures, rather than relying on the fact that a single statement is also a compound statement. A
better way of writing the above example is,

if(x > 0) {

if(y > 0) {
printf("x > 0 && y > 0\n");

}
} else {

printf("x <= 0\n");
}

where all subjects of the control structures are contained within braces, leaving no doubt about the
meaning. A dangling else cannot occur if braces are always used.

Selection Statements 95

Language Reference

If the statements between the if and the else are reached via a label, the statements following the else
will not be executed. However, jumping into a block is poor programming practice, since it makes the
program difficult to follow.

11.5.2 The switch Statement
switch(expression) statement

Usually, statement is a compound statement or block. Embedded within the statement are case labels and
possibly a default label, of the following form:

case constant-expression : statement
default : statement

The controlling expression and the constant-expressions on each case label all must have integral type.
No two of the case constant-expressions may be the same value. The default label may appear at most
once in any switch block.

The controlling statement is evaluated, and the integral promotion is performed on the result. If the
promoted value of the expression matches any of the case labels promoted to the same type, control is given
to the statement following that case label. Otherwise, control is given to the statement following the
default label (if present). If no default label is present, then no statements in the switch block are
executed.

When statements within a switch block are being executed and another case or default is
encountered, it is ignored and execution continues with the statement following the label. The break
statement may be used to terminate execution of the switch block.

In the following example,

int i;

for(i = 1; i <= 8; i++) {
printf("%d ", i);
switch(i) {

case 2:
case 4:

printf("less than 5 ");
case 6:
case 8:

printf("even\n");
break;

default:
printf("odd\n");

}
}

96 Selection Statements

Statements

the following output is produced:

1 odd
2 less than 5 even
3 odd
4 less than 5 even
5 odd
6 even
7 odd
8 even

11.6 Iteration Statements
Iteration statements control looping. There are three forms of iteration statements: while, do/while and
for.

The controlling expression must have a scalar type. The loop body (often a compound statement or block)
is executed repeatedly until the controlling expression is equal to zero.

11.6.1 The while Statement
while (expression) statement

The evaluation of the controlling expression takes place before each execution of the loop body (statement).
If the expression evaluates to zero the first time, the loop body is not executed at all.

The statement may be a compound statement.

For example,

char * ptr;
/* ... */
while(*ptr != ’\0’) {

if(*ptr == ’.’)break;
++ptr;

}

The loop will scan characters pointed at by ptr until either a null character or a dot is found. If the initial
value of ptr points at a null character, then no part of the loop body will be executed, leaving ptr
pointing at the null character.

11.6.2 The do Statement
do statement while (expression);

The evaluation of the controlling expression takes place after each execution of the loop body (statement).
If the expression evaluates to zero the first time, the loop body is executed exactly once.

The statement may be a compound statement.

Iteration Statements 97

Language Reference

For example,

char * ptr;
char * endptr;
/* ... */
endptr = ptr + strlen(ptr);
do {

--endptr;
} while(endptr >= ptr && *endptr == ’ ’);

In this example, the loop will terminate when endptr finds a non-blank character starting from the right,
or when endptr goes past the beginning of the string. If a non-blank character is found, endptr will be
left pointing at that character.

11.6.3 The for Statement
The statement,

for (expr1; expr2; expr3) statement

is almost equivalent to,

expr1;
while (expr2) {
statement
expr3;
}

The difference is that the continue statement will pass control to the statement expr3 rather than to the
end of the loop body.

expr1 is an initialization expression and may be omitted.

expr2 is the controlling expression, and specifies an evaluation to be made before each iteration of the loop
body. If the expression evaluates to zero, the loop body is not executed, and control is passed to the
statement following the loop body. If expr2 is omitted, then a non-zero (true) value is substituted in its
place. In this case, the statements in the loop must cause an explicit break from the loop.

expr3 specifies an operation to be performed after each iteration. A common operation would be the
incrementing of a counter. expr3 may be omitted.

The statement may be a compound statement.

For example,

char charvec[256];
int count;

for(count = 0; count <= 255; count++) {
charvec[count] = count;

}

This example will initialize the character array charvec to the values from 0 to 255.

98 Iteration Statements

Statements

The following are examples of for statements:

for(;;)
statement;

All statements in the body of the loop will be executed until a break or goto statement is executed which
passes control outside of the loop, or a return statement is executed which exits the function. This is
sometimes called loop forever.

for(i = 0; i <= 100; ++i)
statement;

The object i is given the initial value zero, and after each iteration of the loop is incremented by one. The
loop is executed 101 times, with i having the successive values 0, 1, 2 ... 99, 100, and having the
value 101 after termination of the loop.

for(; *bufptr != ’\0’; ++bufptr)
statement;

The object bufptr is already initialized, and the loop will continue until bufptr points at a null
character. After each iteration of the loop, bufptr will be incremented to point at the next character.

11.7 Jump Statements
A jump statement causes execution to continue at a specific place in a program, without executing any
other intervening statements. There are four jump statements: goto, continue, break and return.

11.7.1 The goto Statement
goto identifier;

identifier is a label somewhere in the current function (including any block within the function). The next
statement executed will be the one following that label.

Note: it can be confusing to use the goto statement excessively. It is easy to create spaghetti code, which
is very difficult to understand, even by the person who wrote it. It is recommended that the goto
statement be used, at most, to jump out of blocks, never into them.

11.7.2 The continue Statement

continue;

A continue statement may only appear within a loop body, and causes a jump to the inner-most loop’s
loop-continuation statement (the end of the loop body).

In a while statement, the jump is effectively back to the while.

In a do statement, the jump is effectively down to the while.

Jump Statements 99

Language Reference

In a for statement, the jump is effectively to the closing brace of the compound-statement that is the
subject of the for loop. The third expression in the for statement, which is often an increment or
decrement, is then executed before control is returned to the top of the loop.

11.7.3 The break Statement

break;

A break statement may only appear in an iteration (loop) body or a switch statement.

In a loop, a break will cause execution to continue at the statement following the loop body.

In a switch statement, a break will cause execution to continue at the statement following the switch. If
the loop or switch that contains the break is enclosed inside another loop or switch, only the
inner-most loop or switch is terminated. The goto statement may be used to terminate more than one
loop or switch.

11.7.4 The return Statement
return;
or
return expression;

A popular variation of the second form is,

return(expression);

The return statement causes execution of the current function to be terminated, and control is passed to
the caller. A function may contain any number of return statements.

If the function is declared with a return type of void (no value is returned), then no return statement
within that function may return a value.

If the function is declared as having a return type of other than void, then any return statement with an
expression will evaluate the expression and convert it to the return type. That value will be the value
returned by the function. If a return is executed without an expression, and the caller uses the value
returned by the function, the behavior is undefined since no value was returned. An arbitrary value will
probably be used.

Reaching the closing brace } that terminates the function is equivalent to executing a return statement
without an expression.

100 Jump Statements

12 Functions

There are two forms for defining a function. The first form is,

storage-class return-type identifier (parameter-type-list)
{
declaration-list

statement-list
}

The storage-class may be one of extern or static. If storage-class is omitted, extern is assumed.

The return-type may be any valid type except an array. If return-type is omitted, int is assumed.

The identifier is the name of the function.

The parameter-type-list is either void or empty, meaning the function takes no parameters, or a
comma-separated list of declarations of the objects, including both type and parameter name (identifier). If
multiple arguments of the same type are specified, the type of each argument must be given individually.
The form,

type id1, id2

is not permitted within the parameter list.

If the parameter-type-list ends with ,... then the function will accept a variable number of arguments.

Any parameter declared as "array of type" is changed to "pointer to type". Any parameter declared as "
function" is changed to "pointer to function".

The following examples illustrate several function definitions:

int F(void)

The function F has no parameters, and returns an integer.

void G(int x)

The function G has one parameter, an integer object named x, and does not return a value.

Functions 101

Language Reference

void * H(long int len, long int wid)

The function H has two parameters, long integer objects named len and wid, and returns a pointer
which does not point to any particular type of object.

void I(char * format, ...)

The function I has one known parameter, an object named format that is a pointer to a character
(string). The function also accepts a variable number of parameters following format. The
function does not return a result.

This form of function definition also serves as a prototype declaration for any calls to the function that
occur later in the same module. With the function prototype in scope at the time of a call to the function,
the arguments are converted to the type of the corresponding parameter prior to the value being assigned.
If a call to the function is to be made prior to its definition, or from another module, a function prototype
should be specified for it in order to ensure proper conversion of argument types. Failure to do this will
result in the default argument promotions being performed, with undefined behavior if the function
parameter types do not match the promoted argument types.

The second form of function definition is,

storage-class return-type identifier (identifier-list)
declaration-list
{
declaration-list

statement-list
}

The storage-class, return-type and identifier parts are all the same as for the first form of definition. In this
form, the identifier-list is a (possibly empty) comma-separated list of identifiers (object names) without any
type information. Following the closing parenthesis, and before the opening brace of the body of the
function, the declarations for the objects are given, using the normal rules. Any object of type int need
not be explicitly declared.

In the declarations of the parameter identifiers, register is the only storage-class specifier that may be
used.

A function prototype is created from the definition after the default argument promotions have been
performed on each parameter. All arguments to a function declared in this manner will have the default
argument promotions performed on them. The resulting types must match the types of the declared
parameters, after promotion. Otherwise, the behavior is undefined.

Note that it is impossible to pass an object of type float to a function declared in this manner. The
argument of type float will automatically be promoted to double, and the parameter will also be
promoted to double (assuming that it was declared as float). For similar reasons, it is not possible to
pass an object of type char or short int without promotion taking place.

According to the ISO standard for the C language, this form of function definition is obsolete and should
not be used. It is provided for historical reasons, in particular, for compatibility with older C compilers.
Using the first form of function definition often allows the compiler to generate better code.

102 Functions

Functions

The following examples are the same as those given with the first form above, with the appropriate
modifications:

int F()

The function F has no parameters, and returns an integer.

void G(x)

The function G has one parameter, an integer object named x, and does not return a value. This
example could have also been written as,

void G(x)

int x;

which explicitly declares x to be an integer.

void * H(len, wid)

long int len;
long int wid;

The function H has two parameters, both integer objects named len and wid, and returns a pointer
which does not point to any particular type of object. Any call to this function must ensure that the
arguments are long integers, either by using an object so declared, or by explicitly casting the object
to the type.

The last example using the ellipsis (,...) notation is not directly representable using the second form of
function definition. With most compilers it is possible to handle variable argument lists in this form, but
knowledge of the mechanism used to pass arguments to functions is required, and this mechanism may vary
between different compilers.

12.1 The Body of the Function
Following the declaration of the function and the opening brace is the body of the function. It consists of
two portions, both of which are optional.

The first portion is the declaration list for any objects needed within the function. These objects may have
any type and any storage class. Objects with storage class register or auto have automatic storage
duration, meaning they are created when the function is called, and destroyed when the function returns to
the caller. (The value of the object is not preserved between calls to the function.) Objects with storage
class extern or static have static storage duration, meaning they are created once, before the function
is ever called, and destroyed only when the program terminates. Any value placed in such an object will
remain even after the function has returned, so that the next time the function is called the value will still be
present (unless some other action is taken to change it, such as using another object containing a pointer to
the static object to modify the value).

Unless an explicit return statement is executed, the function will not return to the caller until the brace at
the end of the function definition is encountered. The return will be as if a return statement with no
expression was executed. If the function is declared as returning a value, and the caller attempts to use the
value returned in this manner, the behavior is undefined. The value used will be arbitrary.

A function may call itself (recursion) directly, or it may call another function or functions which in turn call
it. Any objects declared with automatic storage duration are created as a new instance of the object upon

The Body of the Function 103

Language Reference

each recursion, while objects declared with static storage duration only have one instance shared between
the recursive instances of the function.

12.2 Function Prototypes
A function prototype is like a definition of a function, but without the body. A semi-colon is specified
immediately following the closing right parenthesis of the function’s declaration. The prototype describes
the name of the function, the types of parameters it expects (names are optional) and the type of the return
value. This information can be used by the C compiler to do proper argument type checking and
conversion for calls to the function, and to properly handle the return value.

If no function prototype has been found by the time a call to a function is made, all arguments have the
default argument promotions performed on them, and the return type is assumed to be int. If the actual
definition of the function does not have parameters that match the promoted types, the behavior is
undefined. If the return type is not int and a return value is required, the behavior is undefined.

The prototype for a function must match the function definition. Each parameter type and the type of the
return value must be the same, otherwise the behavior is undefined.

All library functions have prototypes in one of several header files. That header file should be included
whenever a function described therein is used. Refer to the Open Watcom C Library Reference manual for
details.

12.2.1 Variable Argument Lists
If the prototype (and definition) for a function has a parameter list that ends with ,... then the function
has a variable argument list or variable parameter list meaning that the number of arguments to the
function can vary. (The library function printf is an example.) At least one argument must be provided
before the variable portion. This argument usually describes, in some fashion, how many other arguments
to expect. It may be a simple count, or may involve (as with printf) an encoding of the number and
types of arguments.

All arguments that correspond to a variable argument list have the default argument promotions performed
on them, since it is not possible to determine, at compilation time, what types will be required by the
function.

Since the parameters represented by the ,... don’t have names, special handling is required. The C
language provides a special type and three macros for handling variable argument lists. To be able to use
these, the header <stdarg.h> must be included.

The type va_list is an implementation-specific type used to store information about the variable list.
Within the function, an object must be declared with type va_list. This object is used by the macros and
functions for processing the list.

The macro va_start has the form,

void va_start(va_list parminfo
,
lastparm
);

104 Function Prototypes

Functions

The object parminfo is set up by the macro with information describing the variable list. The argument
lastparm is the name (identifier) of the last parameter before the ,... and must not have been declared
with the storage class register.

The macro va_start must be executed before any processing of the variable portion of the parameter list
is performed.

va_start may be executed more than once, but only if an intervening va_end is executed.

The macro va_arg has the form,

type
va_arg(va_list

parminfo
,
type
);

parminfo is the same object named in the call to va_start. type is the type of argument expected. The
types expected should only be those that result from the default argument promotions (int, long int
and long long int and their unsigned varieties, double and long double), and those that are not
subject to promotion (pointers, structures and unions). The type must be determined by the program. The
va_arg macro expands to an expression that has the type and value of the next parameter in the variable
list.

In the case of printf, the parameter type expected is determined by the "conversion specifications" such
as %s, %d and so on.

The first invocation of the va_arg macro (after executing a va_start) returns the value of the
parameter following lastparm (as specified in va_start). Each subsequent invocation of va_arg
returns the next parameter in the list. At each invocation, the value of parminfo is modified (in some
implementation-specific manner) to reflect the processing of the parameter list.

If the type of the next parameter does not match type, or if no parameter was specified, the behavior is
undefined.

The macro va_end has the form,

void va_end(va_list parminfo
);

parminfo is the same object named in the corresponding call to va_start. The function va_end closes
off processing of the variable argument list, which must be done prior to returning from the function. If
va_end is not called before returning, the behavior is undefined.

If va_end is called without a corresponding call to va_start having been done, the behavior is
undefined.

After calling va_end and prior to returning, it is possible to call va_start again and reprocess the
variable list. It will be necessary to call va_end again before returning.

The following function takes an arbitrary number of floating-point numbers as parameters along with a
count, and returns the average of the numbers:

Function Prototypes 105

Language Reference

#include <stdarg.h>

extern double Average(int count, ...)
/*************************************/
{

double sum = 0;
int i;
va_list parminfo;

if(count == 0) {
return(0.0);

}
va_start(parminfo, count);
for(i = 0; i < count; i++) {

sum += va_arg(parminfo, double);
}
va_end(parminfo);
return(sum / count);

}

12.3 The Parameters to the Function main
The function main has a special meaning in C. It is the function that receives control when a program is
started. The function main has the following definition:

extern int main(int argc, char * argv[])
{

statements
}

The objects argc and argv have the following properties:

• argc is the "argument count", or the number of parameters (including program name) supplied to
the program, and its value is greater than zero,

• argv is an array of pointers to strings containing the parameters,

• argv[0] is the program name, if available, otherwise it is a pointer to a string containing only the
null character,

• argv[argc] is a null pointer, representing the end of the argument list,

• argv[1] through argv[argc-1] are pointers to strings representing the arguments to the
program. These strings are modifiable by the program, and exist throughout the execution of the
program. The strings will generally be in mixed (upper and lower) case, although a system that
cannot provide mixed case argument strings will provide them in lower case.

The translation of the arguments to the program, as provided by the operating system (often from the
command-line used to invoke the program), into the strings contained in argv, is implementation-defined.

106 The Parameters to the Function main

Functions

With Open Watcom C16 and C32, each unquoted, blank-separated token on the command line is
made into a string that is an element of argv. Quoted strings are maintained as one element
without the quotes.

For example, the command line,

pgm 2+ 1 tokens "one token"

will result in argc having the value 5, and the elements of argv being the strings "pgm", "2+",
"1", "tokens" and "one token".

The function main may also be declared without any parameters, as,

extern int main(void)
{

statements
}

The return value of main is an integer, usually representing a termination status. If no return value is
specified (by using a return statement with no expression or encountering the closing brace in the
function), then the value returned is undefined.

The exit library function may be used to terminate the program at any point. The value of the argument
to exit is returned as if main had returned the value.

The Parameters to the Function main 107

Language Reference

108 The Parameters to the Function main

13 The Preprocessor

The preprocessor, as its name suggests, is that part of the C compiler which processes certain directives
embedded in the source file(s) in advance of the actual compilation of the program. Specifically, the
preprocessor allows a source file to,

• include other files (perhaps referencing externally-defined objects, or containing the definitions of
structures or other types which are needed by more than one source file),

• compile certain portions of the code depending on some condition (such as the kind of computer for
which the code is being generated), and,

• replace macros with other text which is then compiled.

The preprocessing phase occurs after trigraphs have been converted and physical lines ending with \ have
been concatenated to create longer logical lines, but before escape sequences in character constants have
been converted, or adjacent string literals are concatenated.

Any line whose first non-blank character is a # marks the beginning of a preprocessing directive. Spaces
may appear between the # and the identifier for the directive. The #include and #define directives
are each contained on one line (after concatenation of lines ending with \), while the conditional
compilation directives span multiple lines.

A preprocessor directive is not terminated by a semi-colon.

13.1 The Null Directive
A preprocessing directive of the form,

#

(with no other tokens on the same line) has no effect and is discarded.

13.2 Including Headers and Source Files
A directive of the form,

#include <name>

will search a sequence of places defined by the implementation for the header identified by name. A
header declares a set of library functions and any necessary types or macros needed for their use. Headers
are usually provided by the compiler, or by a library provided for use with the compiler.

name may not contain a > character. If the header is found, the entire directive is replaced by the contents
of the header. If the header is not found, an error will occur.

Including Headers and Source Files 109

Language Reference

A directive of the form,

#include "name"

will search for the source file identified by name. name may not contain a " (double-quote) character. If
the source file identified by name is found, then the entire directive is replaced by the contents of the file.
Otherwise, the directive is processed as if the,

#include <name>

form had been used.

A third form of #include directive is also supported. A directive of the form,

#include tokens

causes all macro substitutions (described below) to take place on tokens. After substitution, the
directive must match either the <name> or "name" forms described above (including < and >, or quotes),
in which case the #include is processed in the corresponding manner.

See the User’s Guide for details about how the compiler searches for included files.

#include directives may be nested. Each implementation may allow different depths of nesting, but all
must allow at least 8 levels. (In other words, a source file may include another file, which includes another
file, and so on, up to a depth of eight files.)

The operating system may further limit the number of files that may be open at one time. See the
appropriate operating system manual for details.

13.3 Conditionally Including Source Lines
A directive of the form,

#if constant-expression
body of #if
#endif

evaluates the constant-expression, and if it evaluates to a non-zero value, then the body of the #if is
processed by the preprocessor. Processing of the body ends when a corresponding #elif, #else, or the
terminating #endif is encountered.

The #if directive allows source and preprocessor lines to be conditionally processed by the compiler.

If the constant-expression evaluates to zero, then the body of the #if is not processed, and the
corresponding #elif or #else (if present) is processed. If neither of these directives are present, then
the preprocessor skips to the #endif. Any preprocessing directives within the body of the #if are not
processed, but they are examined in order to determine any nested directives, in order to find the matching
#elif, #else or #endif.

The constant-expression is of the same form as used in the if statement, except that the values used must
be integer values (including character constants). No cast or sizeof operators or enumeration constants
may be used. Each identifier that is a macro name is replaced (as described below), and remaining

110 Conditionally Including Source Lines

The Preprocessor

identifiers are replaced with 0L. All values are converted to long integers using the usual arithmetic
conversions. After each item has been converted, the evaluation of the expression takes place using the
arithmetic of the translation environment. Any character constants are evaluated as members of the source
character set.

With Open Watcom C16 and C32, character constants have the same value in both the source and
execution character sets.

The unary expression,

defined identifier
or
defined(identifier)

may be used to determine if an identifier is currently defined as a macro. Any macro name that is part of
this unary expression is not expanded. The above expressions evaluate to 1 if the named identifier is
currently a macro, otherwise they evaluate to 0.

As discussed above, if the constant-expression of the #if evaluates to zero, the preprocessor looks for a
corresponding #elif. This directive means "else if", and has a similar form as #if:

#elif constant-expression
body of #elif

An #elif may only be placed inside the body of an #if. The body of the #elif is processed only if the
constant-expression evaluates to a non-zero value and the constant-expressions of the corresponding #if
and (preceding) #elif statements evaluated to zero. Otherwise the body is not processed, and the
preprocessor skips to the next corresponding #elif or #else, or to the #endif if neither of these
directives is present.

The #else directive has the form,

#else
body of #else

The body of the #else is processed only if the constant expressions of the corresponding #if and #elif
statements evaluated to zero. The body of the #else is processed until the corresponding #endif is
encountered.

The form of the #endif directive is,

#endif

and marks the end of the #if.

The following are examples of conditional inclusion of source lines:

Conditionally Including Source Lines 111

Language Reference

#if OPSYS == OS_CMS

fn_syntax = "filename filetype fm";
#elif OPSYS == OS_MVS

fn_syntax = "’userid.library.type(membername)’";
#elif OPSYS == OS_DOS || OPSYS == OS_OS2

fn_syntax = "filename.ext";
#else

fn_syntax = "filename";
#endif

The object fn_syntax is set to the appropriate filename syntax string depending on the value of the
macro OPSYS. If OPSYS does not match any of the stated values, then fn_syntax is set to the default
string "filename".

#if HARDWARE == HW_IBM370

#if OPSYS == OS_CMS
escape_cmd = "CMS";

#elif OPSYS == OS_MVS
escape_cmd = "TSO";

#else
escape_cmd = "SYSTEM";

#endif
#else

escape_cmd = "SYSTEM";
#endif

The object escape_cmd is set to an appropriate string depending on the values of the macros HARDWARE
and OPSYS. The indentation of the directives clearly illustrates the flow between various conditions and
levels of directives.

13.3.1 The #ifdef and #ifndef Directives
The #ifdef directive is used to check if an identifier is currently defined as a macro. For example, the
directive,

#ifdef xyz

processes the body of the #ifdef only if the identifier xyz is currently a macro. This example is
equivalent to,

#if defined xyz

or

#if defined(xyz)

In a similar manner, the directive,

#ifndef xyz

is equivalent to,

#if !defined xyz

or

112 Conditionally Including Source Lines

The Preprocessor

#if !defined(xyz)

13.4 Macro Replacement
A directive of the form,

#define identifier replacement-list

defines a macro with the name identifier. This particular form of macro is called an object-like macro,
because it is used like an object (as opposed to a function). Any source line that contains a token matching
the macro name has that token replaced by the replacement-list. The tokens of the replacement-list are then
rescanned for more macro replacements.

For example, the macro,

#define TABLE_LIMIT 256

defines the macro TABLE_LIMIT to be equivalent to the token 256. This is sometimes called a manifest
constant, because it provides a descriptive term for a value that makes programs easier to read. It is a very
good idea to use descriptive names wherever appropriate to improve the readability of a program. It may
also save time if the same value is used many different places, and the value must be changed at some
point.

Care must be exercised when using more complicated object-like macros. Consider the following example:

#define COUNT1 10
#define COUNT2 20
#define TOTAL_COUNT COUNT1+COUNT2
/* ... */
memptr = malloc(TOTAL_COUNT * sizeof(int));

If int is 2 bytes in size, this call to malloc will allocate 50 bytes of memory, instead of the expected 60.
This occurs because TOTAL_COUNT * sizeof(int) becomes 10+20 * 2 after macro
replacement, and the precedence rules for expression evaluation cause the multiply to be done first. To
solve this problem, the macro for TOTAL_COUNT should be defined as:

#define TOTAL_COUNT (COUNT1+COUNT2)

A directive of the form,

#define identifier(identifier-list) replacement-list

is called a function-like macro, because it is used like a function call. No space may appear between
identifier and the left parenthesis in the macro definition. Any source line(s) that contains what looks like a
function call, where the name of the function matches a function-like macro name, and the number of
parameters matches the number of identifiers in the identifier-list, has the entire function call replaced by
the replacement-list, substituting the actual arguments of the function call for the occurrences of the
identifiers in the replacement-list. If the left parenthesis following the macro name was created as the result
of a macro substitution, no further substitution will take place. If the macro name appears but is not
followed by a left parenthesis, no further substitution will take place.

Macro Replacement 113

Language Reference

Consider this example:

#define endof(string) \

(string + strlen(string))

The \ causes the two lines to be joined together into one logical line, making this equivalent to,

#define endof(string) (string + strlen(string))

The function-like macro endof can be used to find a pointer to the null character terminating a string. The
statement,

endptr = endof(ptr);

will have the macro replaced, so it will then be parsed as,

endptr = (ptr + strlen(ptr));

Note that, in this case, the argument is evaluated twice. If StrFn(ptr) was specified instead of ptr,
then the function would get called twice, because the substitution would yield,

endptr = (StrFn(ptr) + strlen(StrFn(ptr)));

In gathering up the tokens used to identify the arguments, each sequence of tokens separated by a comma
constitutes an argument, unless that comma happens to be within a matched pair of left and right
parentheses. When a right parenthesis is found that matches the beginning left parenthesis, and the number
of arguments matches the number of identifiers in the macro definition, then the gathering of the arguments
is complete and the substitution takes place.

For example,

#define mymemcpy(dest, src, len) \

memcpy(dest, src, len)
/* ... */
mymemcpy(destptr, srcptr, (t=0, t=strlen(srcptr)));

will, for the parameters dest, src and len, use the arguments destptr, srcptr and (t=0,
t=strlen(srcptr)) respectively.

This form of macro is also useful for "commenting out" a function call that is used for debugging the
program. For example,

#define alive(where) printf("Alive at" where "\n")

could later be replaced by,

#define alive(where) /* */

Alternatively, the definition,

#define alive(where)

may be used. When the module or program is recompiled using this new definition for alive, all of the
calls to printf made as a result of the macro replacement will disappear, without the necessity of deleting
the appropriate lines in each module.

114 Macro Replacement

The Preprocessor

A directive of the form,

#undef identifier

causes the macro definition for identifier to be thrown away. No error is reported if no macro definition for
identifier exists.

13.5 Argument Substitution
The argument substitution capabilities of the C preprocessor are very powerful, but can be tricky. The
following sections illustrate the capabilities, and try to shed light on the problems that might be
encountered.

13.5.1 Converting An Argument to a String
In the replacement-string for a function-like macro, each occurrence of # must be followed by a parameter
to the macro. If so, both the # and the parameter are replaced by a string created from the characters of the
argument itself, with no further substitutions performed on the argument. Each white space within the
argument is converted to a single blank character. If the argument contains a character constant or string
literal, any occurrences of " (double-quote) are replaced by \", and any occurrences of \ (backslash) are
replaced by \\.

The following table gives a number of examples of the result of the application of the macro,

#define string(parm) # parm

as shown in the first column:

Argument After Substitution

string(abc) "abc"
string("abc") "\"abc\""
string("abc" "def") "\"abc\" \"def\""
string(\’/) "\\’/"
string(f(x)) "f(x)"

13.5.2 Concatenating Tokens
In the replacement-list, if a parameter is preceded or followed by ##, then the parameter is replaced by the
argument itself, without examining the argument for any further replacements. After all such substitutions,
each ## is removed and the tokens on either side are concatenated together. The newly formed token is
then examined for further macro replacement.

may not be either the first or last token in the replacement-list.

Assuming that the following macros are defined,

Argument Substitution 115

Language Reference

#define first "Piece"
#define last "of Earth"
#define firstlast "Peace on Earth"
#define first1 "Peas"

the following table gives a number of examples of the result of the application of the macro,

#define glue(x, y) x ## y

as shown in the first column. For the examples that span several lines, each successive line of the "Result"
column indicates successive expansions of the macros.

Argument After Substitution

glue(12, 34) 1234

glue(first, 1) first1
 "Peas"

glue(first, 2) first2

glue(first, last) firstlast
 "Peace on Earth"

13.5.3 Simple Argument Substitution
In the absence of either the # or ## operators, a parameter is replaced by its argument. Before this
happens, however, the argument is scanned again to see if there are any further macro substitutions to be
made, applying all of the above rules. The rescanning applies only to the argument, not to any other tokens
that might be adjacent to the argument when it replaces the parameter. In other words, if the last token of
the argument and the first token following in the replacement list together form a valid macro, no
substitution of that macro will take place.

Consider the following examples, with these macro definitions in place:

#define f(a) a
#define g(x) (1+x)
#define h(s,t) s t
#define i(y) 2-y
#define xyz printf
#define rcrs rcrs+2

116 Argument Substitution

The Preprocessor

Invocation After Substitution

f(c) c

f(f(c)) f(c)
c

f(g(c)) f((1+c))
(1+c)

h("hello",f("there")) h("hello","there")
"hello" "there"

f(xyz)("Hello\n") f(printf)("Hello\n")
printf("Hello\n")

13.5.4 Variable Argument Macros
Macros may be defined to take optional additional parameters. This is accomplished using the ...
(ellipsis) keyword as the last parameter in the macro declaration. There may be no further parameters past
the variable argument, and errors will be generated if the preprocessor finds anything other than a closing
parenthesis after the ellipsis. The variable arguments may be referenced as a whole using the
__VA_ARGS__ keyword. Special behavior of pasting this parameter with a comma can result in the
comma being removed (this is an extension to the standard). The only token to which this applies is a
comma. Any other token which __VA_ARGS__ is pasted with is not removed. The__VA_ARGS__
parameter may be converted to a string using the # operator. Consider the following examples of macros
with variable number of arguments:

#define shuffle1(a, b, ...) b,__VA_ARGS__##,a
#define shuffle2(a, b, ...) b,## __VA_ARGS__,a
#define shuffle3(a, b, ...) b,## __VA_ARGS__##,a
#define showlist(...) #__VA_ARGS__
#define args(f, ...) __VA_ARGS__

It is safe to assume that any time a comma is used near __VA_ARGS__ the## operator should be used to
paste them together. Both shuffle1 and shuffle2 macros are valid examples of pasting
__VA_ARGS__ together with a comma; either the leading or trailing comma may be concatenated, and if
__VA_ARGS__ is empty, the comma is removed. The macroshuffle3 works as well; the sequence of
concantenations happens from left to right, hence first the comma and empty __VA_ARGS__ are
concantenated and both are removed, afterwards the trailing comma is concatentated with b. Several
example usages of the above macros follow:

Argument Substitution 117

Language Reference

Invocation After Substitution

shuffle(x,y,z) y,z,x

shuffle(x,y) y,x

shuffle(a,b,c,d,e) b,c,d,e,a

showlist(x,y,z) "x,y,z"

args("%d+%d=%d",a,b,c) a,b,c

args("none")

13.5.5 Rescanning for Further Replacement
After all parameters in the replacement-list have been replaced, the resulting set of tokens is re-examined
for any further replacement. If, during this scan, an apparent invocation of the macro currently being
replaced is found, it is not replaced. Further invocations of the macro currently being replaced are not
eligible for replacement until a new set of tokens from the source file, unrelated to the tokens resulting from
the current substitution, are being processed.

Consider these examples, using the above macro definitions:

Invocation After Rescanning

f(g)(r) g(r)
(1+r)

f(f)(r) f(r)

h(f,(b)) f (b)
b

i(h(i,(b))) i(i (b))
2-i (b)

i(i (b)) i(2-b)
2-2-b

rcrs rcrs+2

In other words, if an apparent invocation of a macro appears, and its name matches the macro currently
being replaced, and the apparent invocation was manufactured by other replacements, it is not replaced. If,
however, the apparent invocation comes directly from an argument to the macro replacement, then it is
replaced.

After all replacements have been done, the resulting set of tokens replaces the invocation of the macro in
the source file, and the file is then rescanned starting at the replacement-list. Any further macro
invocations are then replaced. However, if as a result of scanning the replacement-list with following

118 Argument Substitution

The Preprocessor

tokens another apparent invocation of the macro just replaced is found, then that macro name is not
replaced. An invocation of the macro will again be replaced only when a new invocation of the macro is
found, unrelated to the just-replaced macro.

If the replacement-list of tokens resembles a preprocessor directive, the preprocessor will not process it.

A macro definition lasts until it is undefined (with #undef) or until the end of the module.

13.6 More Examples of Macro Replacement
The following examples are given in the ISO C standard, and are presented here as a complete guide to the
way in which macros are replaced. The expansions are shown in stages to better illustrate the process.

The first set of examples illustrates the rules for creating string literals (using the # operator) and
concatenating tokens (using the ## operator). The following definitions are used:

#define str(s) # s
#define xstr(s) str(s)
#define debug(s, t) printf("x" # s "= %d, x" # t "= %s", x ## s, x ## t)
#define INCFILE(n) vers ## n /* comment */
#define glue(a, b) a ## b
#define xglue(a, b) glue(a, b)
#define HIGHLOW "hello"
#define LOW LOW ", world"

The following replacements are made. The final result shows adjacent string literals joined together to
form a single string. This step is not actually part of the preprocessor stage, but is given for clarity.

debug(1, 2);

printf("x" "1" "= %d, x" "2" "= %s", x1, x2);
printf("x1= %d, x2= %s", x1, x2);

fputs(str(strncmp("abc\0d", "abc", ’\4’) /* this goes away */

== 0) str(: @\n), s);
fputs("strncmp(\"abc\\0d\", \"abc\", ’\\4’) == 0" ": @\n", s);
fputs("strncmp(\"abc\\0d\", \"abc\", ’\\4’) == 0: @\n", s);

#include xstr(INCFILE(2).h)

#include xstr(vers2.h)
#include str(vers2.h)
#include "vers2.h"

(and then the directive is replaced by the file contents)

glue(HIGH, LOW)

HIGHLOW
"hello"

xglue(HIGH, LOW)

xglue(HIGH, LOW ", world")
glue(HIGH, LOW ", world")
HIGHLOW ", world"
"hello" ", world"
"hello, world"

The following examples illustrate the rules for redefinition and re-examination of macros. The following
definitions are used:

More Examples of Macro Replacement 119

Language Reference

#define x 3
#define f(a) f(x * (a))
#undef x
#define x 2
#define g f
#define z z[0]
#define h g(~
#define m(a) a(w)
#define w 0,1
#define t(a) a

The following substitutions are made:

f(y+1) + f(f(z)) % t(t(g)(0) + t)(1)
f(x * (y+1)) + ...
f(2 * (y+1)) + f(f(z)) % t(t(g)(0) + t)(1)
... + f(f(x * (z))) % ...
... + f(f(2 * (z))) % ...
... + f(x * (f(2 * (z)))) % ...
... + f(2 * (f(2 * (z)))) % ...
... + f(2 * (f(2 * (z[0])))) % t(t(g)(0) + t)(1)
... % t(g(0) + t)(1)
... % t(f(0) + t)(1)
... % t(f(x * (0)) + t)(1)
... % t(f(2 * (0)) + t)(1)
f(2 * (y+1)) + f(2 * (f(2 * (z[0])))) % f(2 * (0)) + t(1)

Another example:

g(2+(3,4)-w) | h 5) & m(f)^m(m)
f(2+(3,4)-w) | ...
f(2+(3,4)-0,1) | ...
f(x * (2+(3,4)-0,1)) | ...
f(2 * (2+(3,4)-0,1)) | h 5) & ...
... | g(~ 5) & ...
... | f(~ 5) & ...
... | f(x * (~ 5)) & ...
... | f(2 * (~ 5)) & m(f)^...
... & f(w)^...
... & f(0,1)^...
... & f(x * (0,1))^...
... & f(2 * (0,1))^m(m)
... ^m(w)
f(2 * (2+(3,4)-0,1)) | f(2 * (~ 5)) & f(2 * (0,1))^m(0,1)

13.7 Redefining a Macro
Once a macro has been defined, its definition remains until it is explicitly undefined (using the #undef
directive), or until the compilation of the source file is finished. If a macro is undefined, then it may be
redefined in some other (or the same) way. If, during a macro replacement, the name of a macro that has
been defined, undefined and then defined again is encountered, the current (most recent) definition of the
macro is used, not the one that was in effect when the macro being replaced was defined.

Consider this example:

#define MAXVAL 1000
#define g(x) CheckLimit(x, MAXVAL)

#undef MAXVAL
#define MAXVAL 200

g(10);

120 Redefining a Macro

The Preprocessor

This macro invocation expands to,

CheckLimit(10, 200);

A macro that has been defined may be redefined (without undefining it first) only if the new definition has
a replacement-list that is identical to the original definition. Each preprocessing token in both the original
and new replacement lists must have the same ordering and spelling, and there must be the same number of
tokens. The number of spaces between tokens does not matter, unless one definition has no spaces, and the
other has spaces. Comments count as one space.

The following examples illustrate valid redefinitions of macros:

#define OBJ_LIKE (1-1)
#define OBJ_LIKE /******/ (1-1) /****/
#define FN_LIKE(a) (a)
#define FN_LIKE(a) (/******/ \

a /******* \
*/)

The next examples illustrate invalid redefinitions of the same macros:

#define OBJ_LIKE (0)

The token sequence is different.

#define OBJ_LIKE (1 - 1)

The spacing is different (none versus one).

#define FN_LIKE(b) (a)

The parameter is a different name, and is used differently.

#define FN_LIKE(b) (b)

The parameter is a different name.

13.8 Changing the Line Numbering and File Name
A directive of the form,

#line number

sets the line number that the compiler associates with the current line in the source file to the specified
number.

A directive of the form,

Changing the Line Numbering and File Name 121

Language Reference

#line number string

sets the line number as above and also sets the name that the compiler associates with the source file that is
being read to the name contained in the string.

If the directive is not recognized as one of the two forms described above, then macro substitution is
performed (if possible) on the tokens on the line, and another attempt is made. If the directive still does not
match one of the two forms, an error is reported.

13.9 Displaying a Diagnostic Message
A directive of the form,

#error tokens

causes the compiler to display a diagnostic message containing the tokens from the directive.

13.10 Providing Other Information to the Compiler
A directive of the form,

#pragma tokens

informs the compiler about some aspect of the compilation, in an implementation-defined manner.

See the User’s Guide for full details of the #pragma directive.

13.11 Standard Predefined Macros
The following macro names are reserved by the compiler:

__DATE__
The date of translation of the source file (a string literal). The form of the date is "Mmm dd yyyy"
where:

Mmm represents the month and is one of:

Jan Feb Mar Apr May Jun
Jul Aug Sep Oct Nov Dec

dd is the day of the month. The first character is a blank if the day is less than 10.

yyyy is the year.

If the compiler cannot determine the current date, another date is provided.

122 Standard Predefined Macros

The Preprocessor

With Open Watcom C16 and C32, the current date is always available.

__FILE__
The name of the current source file (a string literal). The name may be changed using the #line
directive.

__LINE__
The line number of the current source line (a decimal constant). The line number may be changed
using the #line directive.

__STDC__
The integer constant 1, indicating that the compiler is a standard-conforming implementation.

__STDC_HOSTED__
The integer constant 1, indicating that the compiler is a hosted (not freestanding) implementation.

__STDC_LIB_EXT1__
The long integer constant 200509L, indicating conformance to the ISO/IEC Technical Report
24731, Extensions to the C Library, Part I: Bounds-checking interfaces.

__STDC_VERSION__
A decimal constant indicating the version of ISO C language standard that the compiler adheres to.
Depending on compile time switches, this will be either 199901L (to indicate conformance with
ISO/IEC 9899:1999) or 199409L (to indicate conformance with ISO/IEC 9899/AMD1:1995).

__TIME__
The time of translation of the source file (a string literal). The form of the time is "hh:mm:ss", with
leading zeros provided for values less than 10.

If the compiler cannot determine the current time, another time is provided.

With Open Watcom C16 and C32, the current time is always available.

__func__
The name of the current function (a string literal).

Any other macros predefined by the compiler will begin with an underscore (_) character. None of the
predefined macros, nor the identifier defined, may be undefined (with #undef) or redefined (with
#define).

13.12 Open Watcom C16 and C32 Predefined Macros
The Open Watcom C16 and C32 compilers also provide the following predefined macros for describing the
memory model being used:

__COMPACT__
The compact memory model is being used.

__FLAT__

Open Watcom C16 and C32 Predefined Macros 123

Language Reference

The "flat" memory model is being used for the 80386 processor. All segment registers refer to the
same segment.

__FUNCTION__
The name of the current function (a string literal).

__HUGE__
The huge memory model is being used.

__LARGE__
The large memory model is being used.

__MEDIUM__
The medium memory model is being used.

__SMALL__
The small memory model is being used.

The Open Watcom C16 and C32 compilers also provide the following macros for describing the target
operating system:

__DOS__
The program is being compiled for use on a DOS operating system.

__NETWARE_386__
The program is being compiled for use on the Novell Netware 386 operating system.

__NT__
The program is being compiled for use on the Windows NT operating system.

__OS2__
The program is being compiled for use on the OS/2 operating system.

__QNX__
The program is being compiled for use on the QNX operating system.

__WINDOWS__
The program is being compiled for use with Microsoft Windows.

__WINDOWS_386__
The program is being compiled for use with Microsoft Windows, using the Open Watcom 32-bit
Windows interface.

The Open Watcom C16 compiler also provides the following miscellaneous macro:

__CHEAP_WINDOWS__
The program is being compiled for use with Microsoft Windows using the "zW" compiler option.

124 Open Watcom C16 and C32 Predefined Macros

The Preprocessor

The Open Watcom C16 and C32 compilers also provide the following miscellaneous macros:

__CHAR_SIGNED__
The program is being compiled using the "j" compiler option. The default char type is treated as a
signed quantity.

__FPI__
The program is being compiled using in-line floating point instructions.

__INLINE_FUNCTIONS__
The program is being compiled using the "oi" compiler option.

__WATCOMC__
The compiler being used is the Open Watcom C16 or Open Watcom C32 compiler. The value of the
macro is the version number of the compiler times 100.

__386__
The program is being compiled for the 80386 processor, using the Open Watcom C32 compiler.

The Open Watcom C16 and C32 compilers also provide the following predefined macros for compatibility
with the Microsoft C compiler, even though most of these macros do not begin with an underscore (_)
character:

MSDOS
The program is being compiled for use on a DOS operating system.

_M_IX86
The program is being compiled for a specific target architecture. The macro is identically equal to
100 times the architecture compiler option value (-0, -1, -2, -3, -4, -5, etc.). If "-5" (Pentium
instruction timings) was specified as a compiler option, then the value of _M_IX86 would be 500.

M_I86
The program is being compiled for use on the Intel 80x86 processor.

M_I386
The program is being compiled for use on the Intel 80386 processor.

M_I86CM
The compact memory model is being used.

M_I86HM
The huge memory model is being used.

M_I86LM
The large memory model is being used.

M_I86MM
The medium memory model is being used.

M_I86SM
The small memory model is being used.

Open Watcom C16 and C32 Predefined Macros 125

Language Reference

NO_EXT_KEYS
The program is being compiled for ISO/ANSI conformance using the "za" (no extended keywords)
compiler option.

13.13 The offsetof Macro
The macro,

offsetof(type, member);

expands to a constant expression with type size_t. The value of the expression is the offset in bytes of
member from the start of the structure type. member should not be a bit-field.

To use this macro, include the <stddef.h> header.

13.14 The NULL Macro
The NULL macro expands to a null pointer constant, which is a value that indicates a pointer does not
currently point to anything.

It is recommended that NULL, instead of 0, be used for null pointer constants.

To use this macro, include the <stddef.h> header.

126 The NULL Macro

14 The Order of Translation

This chapter describes the sequence of steps that the C compiler takes in order to translate a set of source
files. Most programmers do not need to thoroughly understand these steps, as they are intuitive. However,
occasionally it will be necessary to examine the sequence to solve a problem in the translation process.

Even though the steps of translation are listed as separate phases, the compiler may combine them together.
However, this should be transparent to the user.

The following are the phases of translation:

1. The characters of the source file(s) are mapped to the source character set. Any end-of-line
markers used in the file system are translated, as necessary, to new-line characters. Any
trigraphs are replaced by the appropriate single character.

2. Physical source lines are joined together wherever a line is terminated by a backslash (\)
character. Effectively, the \ and the new-line character are deleted, creating a longer line from
that record and the one following.

3. The source is broken down into preprocessing tokens and sequences of "white-space" (space and
tab) characters (including comments). Each token is the longest sequence of characters that can
be a token. Each comment is replaced by one white-space character. The new-line characters
are retained at this point.

4. Preprocessing directives are executed and macro invocations are substituted. A header named in
a #include directive is processed according to rules 1 to 4.

5. Members of the source character set and escape sequences in character constants and string
literals are converted to single characters in the execution character set.

6. Adjacent character string literal tokens and adjacent wide string literal tokens are concatenated.

7. White-space characters separating tokens are discarded. Each preprocessing token is converted
to a token. The tokens are translated according to the syntactic and semantic rules.

The final phase usually occurs outside of the compilation phase. In this phase, often called the linking
phase, all external object definitions are resolved, and an executable program image is created. The
completed image contains all the information necessary to run the program in the appropriate execution
environment.

The Order of Translation 127

Language Reference

128 The Order of Translation

Programmer’s Guide

Programmer’s Guide

130

15 Modularity

For many small programs, it is possible to write a single module which contains all of the C source for the
program. This module can then be compiled, linked and run.

However, for larger applications it is not possible to maintain one module with everything in it. Or, if it is
technically possible, compiling such a large module every time a change is made to the source carries too
great a time penalty with it. At this point, it becomes necessary to break the program into pieces, or
modules.

Dividing a program can be done quite easily. If the only issue is to reduce the size of the modules that need
to be compiled, then arbitrary divisions of the code into modules will accomplish the goal.

There are other advantages, however, to planning program modularity. Some of these advantages are:

• recompilation time is reduced,

• code can be grouped into logically-connected areas, making it easier to find things,

• data structures can be hidden in one module, avoiding the temptation of letting an outside piece of
code "peek" into a structure it really should not access directly,

• whole modules can be rewritten or redesigned without affecting other modules,

• areas of the code that depend on the hardware or operating system can be isolated for easy
replacement when the program is ported. This may extend to replacing the module with an assembly
language equivalent for increased performance.

The following sections discuss each of these points in more detail.

15.1 Reducing Recompilation Time
As discussed above, merely breaking a program into pieces will reduce the amount of time spent
recompiling the source. A bug is often a simple coding error, requiring only a one or two line change.
Recompiling only a small percentage of the code and relinking will be faster than recompiling everything.

Occasionally, recompiling all of the modules will be required. This usually arises when a data structure,
constant, macro or other item that is used by several modules is changed. With good program design, such
a change would occur in a header file, and all modules that include that header would be recompiled.

Reducing Recompilation Time 131

Programmer’s Guide

15.2 Grouping Code With Related Functionality
The best way to break programs into modules is to designate each module as having some overall purpose.
For example, one module may deal exclusively with interacting with the user. Another module may
manage a table of names, while yet another may process some small subset of the set of actions that may be
performed by the program.

Many of the modules then become resource managers, and every part of the code that needs to do
something significant with that resource must act through that resource manager.

Using the example of the names table manager, it is likely that the manager will need to do things like
create and delete a name entry in the table. These actions would translate directly to two functions with
external linkage.

By dividing up a program along lines of related functionality, it is usually easy to know where to look when
a problem is being tracked.

Module names that clearly state the purpose of the module also help to locate things.

15.3 Data Hiding
Sometimes a module is written that has exclusive ownership of a data structure, such as a linked list. All
other modules that wish to access the structure must call a function in the module that owns it. This
technique is known as data hiding. The actual data is hidden in the structure, and only the functional
interface (also called the procedural interface) may be used to access it. The functional interface is just the
set of functions provided for accessing the structure.

The main advantage of data hiding is that the data structure may be changed with little or no impact on
other modules. Also, access to the structure is controlled, leading to fewer errors because of misuse of the
structure.

It is possible to have different levels of data hiding. Complete data hiding occurs when no outside module
has access to the structure at all. Partial data hiding occurs when elements of the structure can be accessed,
but the overall structure may not be manipulated.

Note that these rules work only if the programmer respects them. The rules are not enforced by the
compiler. If a module includes a header that describes the data structures being used by another module
that wants exclusive access to the structures, a rule is being broken. Whether this is good or bad depends
entirely on the judgement of the programmer.

15.3.1 Complete Data Hiding
With complete data hiding, having a pointer to an element of the structure has no intrinsic value except as a
parameter to the functional interface. Getting or setting a value in the structure requires a function call.

The advantage of this technique is that the complete data structure may be totally redesigned without
affecting other modules. The definitions of the individual structures (struct’s, union’s, arrays) may be
changed and no other module will have to be changed, or even recompiled.

132 Data Hiding

Modularity

The main disadvantage of complete data hiding is that even simple accesses require a function call, which is
less efficient than just referencing a storage location.

Function-like macros may also be used to implement complete data hiding, avoiding the function call but
hiding the true structure of the data. Recompilation of all modules may be required if the data structures
change.

15.3.2 Partial Data Hiding
Partial data hiding occurs when the structure itself (for example, a linked list) is not accessible in its
entirety, but elements of the structure (an element of the linked list) are accessible.

Using the names table manager as an example, it may be necessary to call the names table manager to
create a name entry, but once the name is created, a pointer to the name is returned as the return value of
the create function. This pointer points to a structure which is defined in a header that any module can
include. Therefore, the contents of an element of the data structure can be manipulated directly.

This method is more efficient than the complete data hiding technique. However, when the structure used
for the names table is changed, all modules that refer to that structure must be recompiled.

15.4 Rewriting and Redesigning Modules
With modular program design and data hiding, it is often possible to completely replace a module without
affecting others. This is usually only possible when the functional interface does not change. With partial
data hiding, the actual types used to implement the structure would have to remain unchanged, otherwise at
least a recompilation would be required. Changing a struct, for example, would probably require a
recompilation if only the types changed, or new members were added. If, however, the names of the
members changed, or some other fundamental change occurred, then source code changes in these other
modules would be necessary.

15.5 Isolating System Dependent Code in Modules
System dependencies are only relevant if the program being developed is to be run on different computers
or operating systems. Isolating system dependent code is discussed more thoroughly in the chapter
"Writing Portable Programs".

It is quite difficult, sometimes, to identify what constitutes system dependent code. The first time a
program is ported to a new system, a number of problem areas usually arise. These areas should be
carefully examined, and the code that is dependent on the host environment should be isolated. Isolation
may be accomplished by placing the code in a separate module marked as system dependent, or by placing
macros in the code to compile differently for the different systems.

Isolating System Dependent Code in Modules 133

Programmer’s Guide

134 Isolating System Dependent Code in Modules

16 Writing Portable Programs

Portable software is software that is written in such a way that it is relatively easy to get the software
running on a new and different computer. By choosing the C language, the first step has been taken to
reduce the effort involved in porting, but there are many other things that must be done. Some of these
things include:

• isolating the portions of the code that depend on the hardware or operating system being used,

• being aware of what features of the C language are implementation-defined and avoiding them, or
taking them into account,

• being aware of the various ranges of values that may be stored in certain types, and declaring objects
appropriately,

• being aware of special features available on some systems that might be useful.

No programmer can seriously expect to write a large portable program the first time. The first port of the
program will take a significant period of time, but the final result will be a program which is much more
portable than before. Generally, each subsequent port will be easier and take less time. Of course, if the
new target system has a new concept that was not considered in the original program design (such as a
totally different user-interface), then porting will necessarily take longer.

16.1 Isolating System Dependent Code
The biggest problem when trying to port a program is to uncover all the places in the code where an
assumption about the underlying hardware or operating system was made, and which proves to be incorrect
on the new system. Many of these differences are hidden in library routines, but they can still cause
problems.

Consider, for example, the issue of distinguishing between alphabetic and non-alphabetic characters. The
library provides the function isalpha which takes a character argument and returns a non-zero value if
the character is alphabetic, and 0 otherwise. Suppose a programmer, writing a FORTRAN compiler,
wanted to know if a variable name started with the letters ’I’ through ’N’, in order to determine if it should
be an integer variable. The programmer might write,

upletter = toupper(name[0]);
if(upletter >= ’I’ && upletter <= ’N’) {

/* ... */
}

If the program was being developed on a machine using the ASCII character set, this code would work fine,
since the upper case letters have 26 consecutive values. However, porting the program to a machine using
the EBCDIC character set, problems may arise because between the letters ’I’ and ’J’ are 7 other characters,
including ’}’. Thus, the name "}VAR" might be considered a valid integer variable name, which it is not.
To solve this problem, the programmer could write,

Isolating System Dependent Code 135

Programmer’s Guide

if(isalpha(name[0])) {

upletter = toupper(name[0]);
if(upletter >= ’I’ && upletter <= ’N’) {

/* ... */
}

}

In this case, it is not necessary to isolate the code because a relatively simple coding change covers both
cases. But there are cases where each system will require a new set of functions for some aspect of the
program.

Consider the user interface of a program. If the program just displays lines of output to a scrolling
terminal, and accepts lines of input in the same way, the user interface probably won’t need to change
between systems. But suppose the program has a sophisticated user interface involving full-screen
presentation of data, windows, and menus, and uses a mouse and the keyboard for input. In the absence of
standards for such interfaces, it is quite likely that each system will require a customized set of functions.
Here is where program portability can become an art.

An approach to this problem is to completely isolate the user interface code of the program. The processing
of data occurs independently of what appears on the screen. At the completion of processing, a function is
called which updates the screen. This code may or may not be portable, depending on how many layers of
functions are built between the physical screen and the generic program. At a level fairly close to the
screen hardware, a set of functions should be defined which perform the set of actions that the program
needs. The full set of functions will depend extensively on the requirements of the program, but they
should be functions that can reasonably be expected to work on any system to which the program will
eventually be ported.

Other areas that may be system dependent include:

• The behavior and capabilities of devices, including printers. Some printers support multiple fonts,
expanded and compressed characters, underlining, graphics, and so on. Others support only
relatively simple text output.

• Accessing memory regions outside of normally addressable storage. A good example is the Intel
80x86 family of processors. With the Open Watcom C16 16-bit compiler, the addressable storage is
1024 kilobytes, but a 16-bit address can only address 64 kilobytes. Special steps must be taken when
compiling in order to address the full storage space. Many compilers for the 8086, including Open
Watcom C16 and C32, introduce new keywords that describe pointer types beyond the 16-bit pointer.

• Code that has been written in assembly language for speed. As code generation technology
advances, assembly language code should become less necessary.

• Code that accesses some special feature of the system. As an example, many systems provide the
ability to temporarily exit to the operating system level, and later return to the program. The method
of doing this varies between systems, and the requirements of the program often change as well.

• Handling the command line parameters. While C breaks the list of parameters down into strings, the
interpretation of those strings may vary between systems. A program probably should attempt to
conform to any conventions of the system on which it is being run.

• Handling other startup requirements. Allocation of memory, initializing devices, and so on, may be
done at this point.

136 Isolating System Dependent Code

Writing Portable Programs

16.2 Beware of Long External Names
According the C Language standard, a compiler may limit external names (functions and global objects) to
6 significant characters. This limitation is often imposed by the "linking" stage of the development process.

In practice, most systems allow many more significant characters. However, the developer of a portable
program should be aware of the potential for porting the program to a system that has a small limit, and
name external objects accordingly.

If the developer must port a program with many names that are not unique within the limitations imposed
by the target development system, the preprocessor may be used to provide shorter unique names for all
objects. Note that this method may seriously impair any symbolic debugging facilities provided by the
development system.

16.3 Avoiding Implementation-Defined Behavior
Several aspects of the code generated by the C compiler depend on the behavior of the particular C
compiler being used. A portable program should avoid these where possible, and take them into
consideration where they can’t be avoided. It may be possible to use macros to avoid some of these issues.

An important behavior that varies between systems is the number of characters of external objects and
functions that the system recognizes. The standard states that a system must recognize a minimum of 6
characters, although future standards may remove or extend this limit. Most systems allow more than 6
characters, but several recognize only 8 characters. For true portability, a function or object that has
external linkage should be kept unique in the first 6 characters. Sometimes this requires ingenuity when
thinking of names, but developing a system for naming objects goes a long way towards fitting within this
restriction. The goal, of course, is to still have meaningful object names. If all systems that will eventually
be used have a higher limit, then the programmer may decide to go past the 6 character limit. If a port is
done to a system with the 6 character limit, a lot of source changes may be required.

To solve this problem, macros could be used to map the actual function names into more cryptic names that
fit within the 6 character limit. This technique may have the adverse affect of making debugging very
difficult because many of the function and object names will not be the same as contained in the source
code.

Another implementation-defined behavior occurs with the type char. The standard does not impose a
signed or unsigned interpretation on the type. A program that uses an object of type char that
requires the values to be interpreted as signed or unsigned should explicitly declare the object with that
type.

16.4 Ranges of Types
The range of an object of type int is not specified by the standard, except to say that the minimum range is
-32767 to 32767. If an object is to contain an integer value, then thought should be given as to whether or
not this range of values is acceptable on all systems. If the object is a counter that will never go outside the
range 0 to 255, then the range will be adequate. However, if the object is to contain values that may exceed
this range, then a long int may be required.

The same argument applies to objects with type float. It may make more sense to declare them with type
double.

Ranges of Types 137

Programmer’s Guide

When converting floating-point numbers to integers, the rounding behavior can also vary between
compilers and systems. If it is important to know how the rounding behaves, then the program should refer
to the macro FLT_ROUNDS (defined in the header <float.h>), which is a value describing the type of
rounding performed.

16.5 Special Features
Some systems provide special features that may or may not exist on other systems. For example, many
provide the ability to exit to the operating system, run some other programs, then return to the program that
was running. Other systems may not provide this ability. In an interactive program, this feature may be
very useful. By isolating the code that deals with this feature, a program may remain easily portable. On
the systems that don’t support this feature, it may be necessary to provide a stub function which does
nothing, or displays a message.

16.6 Using the Preprocessor to Aid Portability
The preprocessor is particularly useful for providing alternate code sequences to deal with portability
issues. Conditional compilation provided by the #if directive allows the insertion of differing code
sequences depending on some criteria. Defining a set of macros which describe the various systems, and
another macro that selects a particular system, makes it easy to add system-dependent code.

For example, consider the macros,

#define OS_DOS 0
#define OS_CMS 1
#define OS_MVS 2
#define OS_OS2 3
#define OS_QNX 4

#define HW_IBMPC 0
#define HW_IBM370 1

#define PR_i8086 0
#define PR_370 1

They describe a set of operating systems (OS), hardware (HW) and processors (PR), which together can
completely describe a computer and its operating system. If the program was being ported to a IBM 370
running the MVS operating system, then it could include a header defining the macros above, and declare
the macros,

#define OPSYS OS_MVS
#define HARDWARE HW_IBM370
#define PROCESSOR PR_370

The following code sequence would include the call only if the program was being compiled for a 370
running MVS:

#if HARDWARE == HW_IBM370 && OPSYS == OS_MVS

DoMVSStuff(x, y);
#endif

138 Using the Preprocessor to Aid Portability

Writing Portable Programs

In other cases, code may be conditionally compiled based only on the hardware regardless of the operating
system, or based only on the operating system regardless of the hardware or processor.

This technique may work well if used in moderation. However, a module that is filled with these directives
becomes difficult to read, and that module becomes a candidate for being rewritten entirely for each
system.

Using the Preprocessor to Aid Portability 139

Programmer’s Guide

140 Using the Preprocessor to Aid Portability

17 Avoiding Common Pitfalls

Even though a C program is much easier to write than the corresponding assembly language program, there
are a few areas where most programmers make mistakes, and spend a great deal of time staring at the code
trying to figure out why the program doesn’t work.

The bugs that are the most difficult to find often occur when the compiler doesn’t give an error or warning,
but the code generated is not what the programmer expected. After a great deal of looking, the programmer
spots the error and realizes that the compiler generated the correct code, but it wasn’t the code that was
wanted.

Some compilers, including Open Watcom C16 and C32, have optional checking for common errors built
into them, providing warnings when these conditions arise. It is probably better to eliminate the code that
causes the warning than to turn off the checking done by the compiler.

The following sections illustrate several common pitfalls, and discuss how to avoid them.

17.1 Assignment Instead of Comparison
The code fragment,

chr = getc();
if(chr = ’a’) {

printf("letter is ’a’\n");
} else {

printf("letter is not ’a’\n");
}

will never print the message letter is not ’a’, regardless of the value of chr.

The problem occurs in the second line of the example. The statement,

if(chr = ’a’) {

assigns the character constant ’a’ to the object chr. If the value of chr is not zero, then the statement
that is the subject of the if is executed.

The value of the constant ’a’ is never zero, so the first part of the if will always be executed. The second
part might as well not even be there!

Of course, the correct way to code the second line is,

if(chr == ’a’) {

changing the = to ==. This statement says to compare the value of chr against the constant ’a’ and to
execute the subject of the if only if the values are the same.

Assignment Instead of Comparison 141

Programmer’s Guide

Using one equal sign (assignment) instead of two (comparison for equality) is a common errors made by
programmers, often by those who are familiar with languages such as Pascal, where the single = means
"comparison for equality".

17.2 Unexpected Operator Precedence
The code fragment,

if(chr = getc() != EOF) {

printf("The value of chr is %d\n", chr);
}

will always print 1, as long as end-of-file is not detected in getc. The intention was to assign the value
from getc to chr, then to test the value against EOF.

The problem occurs in the first line, which says to call the library function getc. The return value from
getc (an integer value representing a character, or EOF if end-of-file is detected), is compared against
EOF, and if they are not equal (it’s not end-of-file), then 1 is assigned to the object chr. Otherwise, they
are equal and 0 is assigned to chr. The value of chr is, therefore, always 0 or 1.

The correct way to write this code fragment is,

if((chr = getc()) != EOF) {

printf("The value of chr is %d\n", chr);
}

The extra parentheses force the assignment to occur first, and then the comparison for equality is done.

Note: doing assignment inside the controlling expression of loop or selection statements is not a good
programming practice. These expressions tend to be difficult to read, and problems such as using = instead
of == are more difficult to detect when, in some cases, = is desired.

17.3 Delayed Error From Included File
Suppose the source file mytypes.h contained the line,

typedef int COUNTER

and the main source file being compiled started with,

#include "mytypes.h"

extern int main(void)
/*********************/
{

COUNTER x;
/* ... */
}

Attempting to compile the main source file would report a message such as,

Error! Expecting ’;’ but found ’extern’ on line 3

142 Delayed Error From Included File

Avoiding Common Pitfalls

Examining the main source file does not show any problem. The problem actually occurs in the included
source file, since the typedef statement does not end with a semi-colon. It is this semi-colon that the
compiler is expecting to find. The next token found is the extern keyword, so the error is reported in the
main source file.

When an error occurs shortly after an #include directive, and the error is not readily apparent, the error
may actually be caused by something in the included file.

17.4 Extra Semi-colon in Macros
The next code fragment illustrates a common error when using the preprocessor to define constants:

#define MAXVAL 10;

/* ... */

if(value >= MAXVAL) break;

The compiler will report an error message like,

Error! Expecting ’)’ but found ’;’ on line 372

The problem is easily spotted when the macro substitution is performed on line 372. Using the definition
for MAXVAL, the substituted version of line 372 reads,

if(value >= 10;) break;

The semi-colon (;) in the definition was not treated as an end-of-statement indicator as expected, but was
included in the definition of the macro (manifest constant) MAXVAL. The substitution then results in a
semi-colon being placed in the middle of the controlling expression, which yields the syntax error.

17.5 The Dangling else
In the code fragment,

if(value1 > 0)

if(value2 > 0)
printf("Both values greater than zero\n");

else
printf("value1 is not greater than zero\n");

suppose value1 has the value 3, while value2 has the value -7. This code fragment will cause the
message,

value1 is not greater than zero

to be displayed.

The problem occurs because of the else. The program is indented incorrectly according to the syntax that
the compiler will determine from the statements. The correct indentation should clearly show where the
error lies:

The Dangling else 143

Programmer’s Guide

if(value1 > 0)

if(value2 > 0)
printf("Both values greater than zero\n");

else
printf("value1 is not greater than zero\n");

The else belongs to the second if, not the first. Whenever there is more than one if statement without
braces and without an else statement, the next else will be matched to the most recent if statement.

This code fragment clearly illustrates the usefulness of using braces to state program structure. The above
example would be (correctly) written as,

if(value1 > 0) {

if(value2 > 0) {
printf("Both values greater than zero\n");

}
} else {

printf("value1 is not greater than zero\n");
}

17.6 Missing break in switch Statement
In the code fragment,

switch(value) {

case 1:
printf("value is 1\n");

default:
printf("value is not 1\n");

}

if value is 1, the following output will appear:

value is 1
value is not 1

This unexpected behavior occurs because, when value is 1, the switch causes control to be passed to
the case 1: label, where the first printf occurs. Then the default label is encountered. Labels are
ignored in execution, so the next statement executed is the second printf.

To correct this example, it should be changed to,

switch(value) {

case 1:
printf("value is 1\n");
break;

default:
printf("value is not 1\n");

}

The break statement causes control to be passed to the statement following the closing brace of the
switch statement.

144 Missing break in switch Statement

Avoiding Common Pitfalls

17.7 Side-effects in Macros
In the code fragment,

#define endof(ptr) ptr + strlen(ptr)
/* ... */
endptr = endof(ptr++);

the statement gets expanded to,

endptr = ptr++ + strlen(ptr++);

The parameter ptr gets incremented twice, rather than once as expected.

The only way to avoid this pitfall is to be aware of what macros are being used, and to be careful when
using them. Several library functions may be implemented as macros on some systems. These functions
include,

getc putc
getchar putchar

The ISO standard requires that documentation states which library functions evaluate their arguments more
than once.

Side-effects in Macros 145

Programmer’s Guide

146 Side-effects in Macros

18 Programming Style

Programming style is as individual as a person’s preference in clothing. Unfortunately, just as some
programmers wouldn’t win a fashion contest, some code has poor style. This code is usually easy to spot,
because it is difficult to understand.

Good programming style can make the difference between programs that are easy to debug and modify, and
those that you just want to avoid.

There are a number of aspects to programming style. There is no perfect style that is altogether superior to
all others. Each programmer must find a style that makes him or her comfortable. The intention is to write
code that is easy to read and understand, not to try to stump the next person who has to fix a problem in the
code.

Good programming style will also lead to less time spent writing a program, and certainly less time spent
debugging or modifying it.

The following sections discuss various aspects of programming style. They reflect the author’s own biases,
but they are biases based on years of hacking his way through code, mostly good and some bad, and much
of it his own!

18.1 Consistency
Perhaps the most important aspect of style is consistency. Try, as much as possible, to use the same rules
throughout the entire program. Having a mixed bag of styles within one program will confuse even the
best of programmers trying to decipher the code.

If more than one programmer is involved in the project, it may be appropriate, before the first line of code
is written, to discuss general rules of style. Some rules are more important than others. Make sure
everyone understands the rules, and are encouraged to follow them.

18.2 Case Rules for Object and Function Names
When examining a piece of code, the scope of an object is sometimes difficult to determine. One needs to
examine the declarations of objects within the function, then those declared outside of any functions, then
those declared included from other source files. If no strict rules of naming objects are followed, each
place will need to be laboriously searched each time.

Using mixed case object names, with strict rules, can make the job much easier. It does not matter what
rules are established, as long as the rules are consistently applied throughout the program.

Consider the following sample set of rules, used throughout this book:

1. objects declared within a function with automatic storage duration are entirely in lower case,

Case Rules for Object and Function Names 147

Programmer’s Guide

int x, counter, limit;
float save_global;
struct s * sptr;

2. objects with static storage duration (global objects) start with an upper case letter, and words or
word fragments also start with upper case,

static int TotalCount;
extern float GlobalAverage;
static struct s SepStruct;

3. function names start with an upper case letter, and words or word fragments also start with upper
case, (distinguishable from global objects by the left parenthesis),

extern int TrimLength(char * ptr, int len);
static field * CreateField(char * name);

4. all constants are entirely in upper case.

#define FIELD_LIMIT 500
#define BUFSIZE 32

enum { INVALID, HELP, ADD, DELETE, REPLACE };

5. all typedef tags are in upper case.

typedef struct {

float real;
float imaginary;

} COMPLEX;

Thus, the storage duration and scope of each identifier can be determined without regard to context.
Consider this program fragment:

chr = ReadChar();
if(chr != EOF) {

GlbChr = chr;
}

Using the above rules,

1. ReadChar is a function,

2. chr is an object with automatic storage duration defined within the current function,

3. EOF is a constant,

4. GlbChr is an object with static storage duration.

Note: the library functions do not use mixed case names. Also, the function main does not begin with an
upper case M. Using the above coding style, library functions would stand out from other functions
because of the letter-case difference.

148 Case Rules for Object and Function Names

Programming Style

18.3 Choose Appropriate Names
The naming of objects can be critical to the ease with which bugs can be found, or changes can be made.
Using object names such as linecount, columns and rownumber will make the program more
readable. Of course, short forms will creep into the code (few programmers like to type more than is really
necessary), but they should be used judiciously.

Consistency of naming also helps to make the code more readable. If a structure is used throughout the
program, and many different routines need a pointer to that structure, then the name of each object that
points to it could be made the same. Using the example of a symbol table, the object name symptr might
be used everywhere to mean "pointer to a symbol structure". A programmer seeing that object will
automatically know what it is declared to be.

Appropriate function names are also very important. Names such as DoIt, while saving the original
programmer from trying to think of a good name, make it more difficult for the next programmer to figure
out what is going on.

18.4 Indent to Emphasize Structure
The following is a valid function:

static void BubbleSort(int list[], int n)
/**********************************/ { int index1
= 0; int index2; int temp; if(n < 2)return; do {
index2 = index1 + 1; do { if(list[index1] >
list[index2]) { temp = list[index1]; list[
index1] = list[index2]; list[index2] = temp;
} } while(++index2 < n); } while(++index1 < n-1
); }

(The compiler will know that it’s valid, but the programmer would find it difficult to validate.) Here is the
same function, but using indenting to clearly illustrate the function structure:

static void BubbleSort(int list[], int n)
/***/

{
int index1 = 0;
int index2;
int temp;

if(n < 2)return;
do {

index2 = index1 + 1;
do {

if(list[index1] > list[index2]) {
temp = list[index1];
list[index1] = list[index2];
list[index2] = temp;

}
} while(++index2 < n);

} while(++index1 < n-1);
}

Indent to Emphasize Structure 149

Programmer’s Guide

Generally, it is good practice to indent each level of code by a consistent amount, for example 4 spaces.
Thus, the subject of an if statement is always indented 4 spaces inside the if. In this manner, all loop and
selection statements will stand out, making it easier to determine when the statements end.

The following are some recommended patterns to use when indenting statements. These patterns have been
used throughout the book.

int Fn(void)
/************/
{

/* indent 4 */
}

if(condition) {
/* indent 4 */

} else {
/* indent 4 */

}

if(condition) {
/* indent 4 */

} else if(condition) {
/* indent 4 from first if */
if(condition) {

/* indent 4 from nearest if */
}

} else {
/* indent 4 from first if */

}

switch(condition) {
case VALUE:

/* indent 4 from switch */
case VALUE:
default:

}

do {
/* indent 4 */

while(condition);

while(condition) {
/* indent 4 */

}

for(a; b; c) {
/* indent 4 */

}

150 Indent to Emphasize Structure

Programming Style

Two other popular indenting styles are,

if(condition)

{
statement

}

and,

if(condition)
{

statements
}

It is not important which style is used. However, a consistent style is an asset.

18.5 Visually Align Object Declarations
A lengthy series of object declarations can be difficult to read if care is not taken to improve the readability.
Consider the declarations,

struct flentry *flptr;
struct fldsym *sptr;
char *bufptr,*wsbuff;
int length;

Now, consider the same declarations, but with some visual alignment done:

struct flentry * flptr;
struct fldsym * sptr;
char * bufptr;
char * wsbuff;
int length;

It is easier to scan a list of objects when their names all begin in the same column.

18.6 Keep Functions Small
A function that is several hundred lines long can be difficult to comprehend, especially if it is being looked
at on a terminal, which might only have 25 lines. Large functions also tend to have a lot of nesting of
program structures, making it difficult to follow the logic.

A function that fits entirely within the terminal display can be studied and understood more easily.
Program constructs don’t get as complicated. Large functions often can be broken up into smaller functions
which are easier to maintain.

Keep Functions Small 151

Programmer’s Guide

18.7 Use static for Most Functions
Most functions do not need to be called from routines outside of the current module. Yet, if the keyword
static is not used in the function declaration, then the function is automatically given external linkage.
This can lead to a proliferation of external symbols, which may cause naming conflicts. Also, some linking
programs may impose limitations.

Only those functions that must have external linkage should be made external. All other definitions of
functions should start with the keyword static.

It also is a good idea to start definitions for external functions with the keyword extern, even though it is
the default case.

18.8 Group Static Objects Together
Static objects that are declared outside of any function definition, and are used throughout the module,
generally should be declared together, for example before the definition of the first function. Placing the
declarations of these objects near the beginning of the module makes them easier to find.

18.9 Do Not Reuse the Names of Static Objects
If an object with static storage duration exists in one module, but has internal linkage, then another object
with the same name should not be declared in another module. The programmer may confuse them.

Even more importantly, if an object exists with external linkage, a module should not declare another
object with the same name with internal linkage. This second object will overshadow the first within the
module, but the next programmer to look at the code will likely be confused.

18.10 Use Included Files to Organize Structures
Included source files can be used to organize data structures and related information. They should be used
when the same structure is needed in different modules. They should even be considered when the
structure is used only in one place.

Generally, each included source file should contain structures and related information for one aspect of the
program. For example, a file that describes a symbol table might contain the actual structures or other
types that are required, along with any manifest constants that are useful.

18.11 Use Function Prototypes
Function prototypes are very useful for eliminating common errors when calling functions. If every
function in a program is prototyped (and the prototypes are used), then it is difficult to pass the wrong
number or types of arguments, or to misinterpret the return value.

Using the symbol table example, the included source file that describes the symbol table structure and any
related global objects or constant values could also contain the function prototypes for the functions used to

152 Use Function Prototypes

Programming Style

access the table. Another approach is to have separate source files containing the function prototypes,
possibly using a different naming convention for the file. For example,

#include "symbols.h"
#include "symbols.fn"

would include the structures and related values from symbols.h, and the function prototypes from
symbols.fn.

18.12 Do Not Do Too Much In One Statement
In the same manner that a big function that does too much can be confusing, so too can a long statement.
Historically, a programmer might combine many operations into a single statement in order to get the
compiler to produce better code. With current compilers, splitting the statement into two or more simpler
statements will produce equivalent code, and will make the program easier to understand.

A common example of a statement that can be split is,

if((c = getchar()) != EOF) {

Historically, this statement might have allowed the compiler to avoid storing the value of c and then
reloading it again to compare with EOF. However, the equivalent,

c = getchar();
if(c != EOF) {

is more readable, and most compilers will produce the same code.

18.13 Do Not Use goto Too Much
The goto statement is a very powerful tool, but it is very easy to misuse. Here are some general rules for
the use of goto’s:

• don’t use them!

If that rule is not satisfactory, then these should be followed:

• Never goto a label that is above. That is the beginning of spaghetti code. Loop statements can
always be used.

• Never goto the middle of a block (compound-statement). A block should always be entered by
passing over the opening brace.

• Use goto to jump out of nested blocks, where the break statement is not appropriate.

Above all, keep the use of goto’s to a minimum.

Do Not Use goto Too Much 153

Programmer’s Guide

18.14 Use Comments
Comments are crucial to good programming style. Regardless of how well the program is written, some
code will be difficult to understand. Comments make it possible to give a full explanation for what the
code is trying to do.

Each function definition should begin with a short comment describing what the function does.

Each module should begin with comments describing the purpose of the module. It is also a good idea to
type in who wrote it, when it was written, who modified it and why, and when it was modified. This last
collection of information is commonly called an audit trail, as it leaves a trail allowing a programmer to see
the evolution of the module, along with who has been changing it.

The following audit trail is from one module in an actual product:

/* Modified: By: Reason:
* ======== == ======
* 84/04/23 Dave McClurkin Initial implementation
* 84/11/08 Jim Graham Implemented TOTAL non-combinable;
* added MAXIMUM,MINIMUM,AVERAGE
* 84/12/12 Steve McDowell Added call to CheckBreak
* 85/01/12 ... Fixed overflow problems
* 85/01/29 Alex Kachura Saves value of TYP_ field
* 86/01/31 Steve McDowell Switched to use of numeric accumulator
* 86/12/10 ... Removed some commented code
* 87/02/24 ... Made all commands combinable
*/

154 Use Comments

Appendices

Appendices

156

Compiler Keywords

A. Compiler Keywords

The following topics are discussed:

• Standard Keywords

• Open Watcom C16 and C32 Keywords

A.1 Standard Keywords
The following is the list of keywords reserved by the C language:

auto double inline static
_Bool else int struct
break enum long switch
case extern register typedef
char float restrict union
_Complex for return unsigned
const goto short void
continue if signed volatile
default _Imaginary sizeof while
do

A.2 Open Watcom Extended Keywords
The Open Watcom compilers also reserve the following extended keywords:

Microsoft compilers compatible
__asm __finally __pascal
__based __fortran __saveregs
__cdecl __huge __segment
__declspec __inline __segname
__except __int64 __self
__export __interrupt __stdcall
__far __leave __syscall
__far16 __loadds __try
__fastcall __near __unaligned

IBM compilers compatible
_Cdecl _Finally _Seg16
_Except _Leave _Syscall
_Export _Packed _System
_Far16 _Pascal _Try
_Fastcall

Open Watcom specific

Open Watcom Extended Keywords 157

Appendices

__builtin_isfloat __ow_imaginary_unit __watcall

The keywords __based,__segment,__segname and__self are described in the section "Based
Pointers for Open Watcom C16 and C32". Open Watcom C16 and C32 provide the predefined macro
_based for convenience and compatibility with the Microsoft C compiler. It may be used in place of
__based. Open Watcom C16 and C32 provide the predefined macro _segment for convenience and
compatibility with the Microsoft C compiler. It may be used in place of __segment. Open Watcom
C16 and C32 provide the predefined macro _segname for convenience and compatibility with the
Microsoft C compiler. It may be used in place of __segname. Open Watcom C16 and C32 provide the
predefined macro _self for convenience and compatibility with the Microsoft C compiler. It may be used
in place of __self.

The keywords __far,__huge and__near are described in the sections "Special Pointer Types for
Open Watcom C16" and "Special Pointer Types for Open Watcom C32". Open Watcom C16 and
C32 provide the predefined macros far and _far for convenience and compatibility with the Microsoft C
compiler. They may be used in place of __far. Open Watcom C16 and C32 provide the predefined
macros huge and _huge for convenience and compatibility with the Microsoft C compiler. They may be
used in place of __huge. Open Watcom C16 and C32 provide the predefined macros near and _near
for convenience and compatibility with the Microsoft C compiler. They may be used in place of __near.

The keywords __far16 ,_Far16 and_Seg16 are described in the section "Special Pointer Types for
Open Watcom C32". Open Watcom C16 and C32 provide the predefined macro _far16 for convenience
and compatibility with the Microsoft C compiler. It may be used in place of __far16.

The _Packed keyword is described in the section "Structures".

The __cdecl and_Cdecl keywords may be used with function definitions, and indicates that the calling
convention for the function is the same as that used by Microsoft C. All parameters are pushed onto the
stack, instead of being passed in registers. This calling convention may be controlled by a #pragma
directive. See the User’s Guide. Open Watcom C16 and C32 provide the predefined macros cdecl and
_cdecl for convenience and compatibility with the Microsoft C compiler. They may be used in place of
__cdecl.

The __fastcall and_Fastcall keywords may be used with function definitions, and indicates that
the calling convention used is compatible with Microsoft C compiler. This calling convention may be
controlled by a #pragma directive. Open Watcom C16 and C32 provide the predefined macro
_fastcall, for convenience and compatibility with the Microsoft C compiler. It may be used in place
of __fastcall See the User’s Guide..

The __fortran keyword may be used with function definitions, and indicates that the calling convention
for the function is suitable for calling a function written in FORTRAN. By default, this keyword has no
effect. This calling convention may be controlled by a #pragma directive. See the User’s Guide. Open
Watcom C16 and C32 provide the predefined macros fortran and _fortran for convenience and
compatibility with the Microsoft C compiler. They may be used in place of __fortran.

The __pascal and_Pascal keywords may be used with function definitions, and indicates that the
calling convention for the function is suitable for calling a function written in Pascal. All parameters are
pushed onto the stack, but in reverse order to the order specified by __cdecl. This calling convention
may be controlled by a #pragma directive. See the User’s Guide. Open Watcom C16 and C32 provide
the predefined macros pascal and _pascal for convenience and compatibility with the Microsoft C
compiler. They may be used in place of __pascal.

The __syscall ,_Syscall and_System keywords may be used with function definitions, and
indicates that the calling convention used is compatible with OS/2 (version 2.0 or higher). This calling

158 Open Watcom Extended Keywords

Compiler Keywords

convention may be controlled by a #pragma directive. See the User’s Guide. Open Watcom C16 and
C32 provide the predefined macro _syscall for convenience and compatibility with the Microsoft C
compiler. It may be used in place of __syscall.

The __stdcall keyword may be used with function definitions, and indicates that the calling convention
used is compatible with Win32. This calling convention may be controlled by a #pragma directive. Open
Watcom C16 and C32 provide the predefined macro _stdcall, for convenience and compatibility with
the Microsoft C compiler. It may be used in place of __stdcall See the User’s Guide.

The __watcall keyword may be used with function definitions, and indicates that the Open Watcom
default calling convention is used. This calling convention may be controlled by a #pragma directive.
See the User’s Guide.

The __export and_Export keywords may be used with objects with static storage duration (global
objects) and with functions, and describes that object or function as being a known object or entry point
within a Dynamic Link Library in OS/2 or Microsoft Windows. The object or function must also be
declared as having external linkage (using the extern keyword). In addition, any call back function
whose address is passed to Windows (and which Windows will "call back") must be defined with the
__export keyword, otherwise the call will fail and cause unpredictable results. The __export
keyword may be omitted if the object or function is exported by an option specified using the linker. See
the Open Watcom Linker User’s Guide. Open Watcom C16 and C32 provide the predefined macro
_export for convenience and compatibility with the Microsoft C compiler. It may be used in place of
__export.

The __interrupt keyword may be used with function definitions for functions that handle computer
interrupts. All registers are saved before the function begins execution and restored prior to returning from
the interrupt. The machine language return instruction for the function is changed to iret (interrupt
return). Functions written using __interrupt are suitable for attaching to the interrupt vector using the
library function _dos_setvect. Open Watcom C16 and C32 provide the predefined macros
interrupt and _interrupt for convenience and compatibility with the Microsoft C compiler. They
may be used in place of __interrupt.

The __loadds keyword may be used with functions, and causes the compiler to generate code that will
force the DS register to be set to the default data segment (DGROUP) so that near pointers will refer to that
segment. This keyword is normally used with functions written for Dynamic Link Libraries in Windows
and OS/2. Open Watcom C16 and C32 provide the predefined macro _loadds for convenience and
compatibility with the Microsoft C compiler. It may be used in place of __loadds.

The __saveregs keyword may be used with functions. It is provided for compatibility with Microsoft
C, and has no effect in Open Watcom C16 and C32. Open Watcom C16 and C32 provide the predefined
macro _saveregs for convenience and compatibility with the Microsoft C compiler. It may be used in
place of __saveregs.

The __try ,_Try ,__except ,_Except ,__finally ,_Finally ,__leave and_Leave
keywords may be used for exception handling, See the "Structured Exception Handling" in User’s Guide.
Open Watcom C16 and C32 provide the predefined macro _try for convenience and compatibility with
the Microsoft C compiler. It may be used in place of __try. Open Watcom C16 and C32 provide the
predefined macro _except for convenience and compatibility with the Microsoft C compiler. It may be
used in place of __except. Open Watcom C16 and C32 provide the predefined macro _finally for
convenience and compatibility with the Microsoft C compiler. It may be used in place of __finally.
Open Watcom C16 and C32 provide the predefined macro _leave for convenience and compatibility with
the Microsoft C compiler. It may be used in place of __leave.

The __ow_imaginary_unit keyword may be used as _Imaginary constant 1.0.

Open Watcom Extended Keywords 159

Appendices

The __builtin_isfloat keyword may be used as function for testing symbol type.

160 Open Watcom Extended Keywords

Trigraphs

B. Trigraphs

The following is the list of trigraphs. In a C source file, all occurrences (including inside quoted strings and
character constants) of any of the trigraph sequences below are replaced by the corresponding single
character.

Character Trigraph Sequence

[??(
] ??)
{ ??<
} ??>
| ??!
??=
\ ??/
^ ??’
~ ??-

No other trigraphs exist. Any question mark (?) that does not belong to one of the trigraphs is not changed.

To get a sequence of characters that would otherwise be a trigraph, place a \ before the second question
mark. This will cause the trigraph to be broken up so that it is not recognized, but later in the translation
process, the \? will be converted to ?. For example, ?\?= will be translated to ??=.

Trigraphs 161

Appendices

162 Trigraphs

Escape Sequences

C. Escape Sequences

The following are the escape sequences and their meanings:

Escape
Sequence Meaning

\a Causes an audible or visual alert
\b Back up one character
\f Move to the start of the next page
\n Move to the start of the next line
\r Move to the start of the current line
\t Move to the next horizontal tab
\v Move to the next vertical tab

Each escape sequence maps to a single character. When such a character is sent to a display device, the
action corresponding to that character is performed.

Escape Sequences 163

Appendices

164 Escape Sequences

Operator Precedence

D. Operator Precedence

The table below summarizes the levels of precedence in expressions.

Expression Type Operators

primary identifier constant
string (expression)

postfix a[b] f()
a.b a->b a++ a--

unary sizeof u sizeof(a)
++a --a &a *a
+a -a ~a !a

cast (type) a

multiplicative a * b a / b a % b

additive a + b a - b

shift a << b a >> b

relational a < b a > b a <= b a >= b

equality a == b a != b

bitwise AND a & b

bitwise exclusive OR a ^ b

bitwise inclusive OR a | b

logical AND a && b

logical OR a || b

conditional † a ? b : c

assignment † a = b a += b a -= b a *= b
a /= b a %= b a &= b a ^= b
a |= b a <<= b a >>= b

comma a,b

† associates from right to left

Operator Precedence 165

Appendices

Operations at a higher level in the table will occur before those below. All operators involving more than
one operand associate from left to right, except for the conditional and assignment operators, which
associate from right to left. Operations at the same level, except where discussed in the relevant section,
may be executed in any order that the compiler chooses (subject to the usual algebraic rules). In particular,
the compiler may regroup sub-expressions that are both associative and commutative in order to improve
the efficiency of the code, provided the meaning (i.e. types and results) of the operands and result are not
affected by the regrouping.

The order of any side-effects (for example, assignment, or action taken by a function call) is also subject to
alteration by the compiler.

166 Operator Precedence

Formal C Grammar

E. Formal C Grammar

This appendix presents the formal grammar of the C programming language. The following notation is
used:

{digit}(0)
Zero or more occurrences of digit are allowed.

{digit}(1)
One or more occurrences of digit are allowed.

〈integer-suffix 〉
integer-suffix is optional, with only one occurrence being allowed if present.

A | B | C
Choose one of A, B or C.

E.1 Lexical Grammar
The following topics are discussed:

• Tokens

• Keywords

• Identifiers

• Constants

• String Literals

• Operators

• Punctuators

E.1.1 Tokens
token

keyword
or identifier
or constant
or string-literal
or operator
or punctuator

Lexical Grammar 167

Appendices

E.1.2 Keywords
keyword

standard-keyword
or Open Watcom-extended-keyword

standard-keyword
auto double inline static
_Bool else int struct
break enum long switch
case extern register typedef
char float restrict union
_Complex for return unsigned
const goto short void
continue if signed volatile
default _Imaginary sizeof while
do

Open Watcom-extended-keyword

Microsoft compilers compatible
__asm __finally __pascal
__based __fortran __saveregs
__cdecl __huge __segment
__declspec __inline __segname
__except __int64 __self
__export __interrupt __stdcall
__far __leave __syscall
__far16 __loadds __try
__fastcall __near __unaligned

IBM compilers compatible
_Cdecl _Finally _Seg16
_Except _Leave _Syscall
_Export _Packed _System
_Far16 _Pascal _Try
_Fastcall

Open Watcom specific
__builtin_isfloat __ow_imaginary_unit __watcall

E.1.3 Identifiers
identifier

nondigit {nondigit | digit}(0)

nondigit
a | b | ... | z | A | B | ... | Z | _

168 Lexical Grammar

Formal C Grammar

digit
0 | 1 | ... | 9

E.1.4 Constants
constant

floating-constant
or integer-constant
or enumeration-constant
or character-constant

floating-constant
fractional-constant 〈exponent-part 〉 〈floating-suffix 〉

or digit-sequence exponent-part 〈floating-suffix 〉

exponent-part
e|E 〈+|- 〉 digit-sequence

floating-suffix
 f | F | l | L

fractional-constant
 〈digit-sequence 〉 . digit-sequence

or digit-sequence .

digit-sequence
{digit}(1)

integer-constant
decimal-constant 〈integer-suffix 〉

or octal-constant 〈integer-suffix 〉
or hexadecimal-constant 〈integer-suffix 〉

integer-suffix
u|U 〈l|L 〉

or l|L 〈u|U 〉

decimal-constant
nonzero-digit{digit}(0)

nonzero-digit
 1 | 2 | ... | 9

octal-constant
0{octal-digit}(0)

Lexical Grammar 169

Appendices

octal-digit
0 | 1 | ... | 7

hexadecimal-constant
0x|0X{hexadecimal-digit}(1)

hexadecimal-digit
0 | 1 | ... | 9 |
a | b | ... | f | A | B | ... | F

enumeration-constant
identifier

character-constant
’{c-char}(1)’

or L’{c-char}(1)’

c-char
any character in the source character set except
the single-quote ’, backslash \, or new-line character

or escape-sequence

escape-sequence is one of
\’ \" \\
\o \oo \ooo
\x{hexadecimal-digit}(1)
\a \b \f \n \r \t \v

E.1.5 String Literals
string-literal

"{s-char}(0)"
or L"{s-char}(0)"

s-char
any character in the source character set except
the double-quote ", backslash \, or new-line character

or escape-sequence

E.1.6 Operators
operator is one of

[] () . ->
++ -- & * + - ~ ! sizeof
/ % << >> < > <= >= == != ^ | && ||
? :
= *= /= %= += -= <<= >>= &= ^= |=
, # ##
:>

170 Lexical Grammar

Formal C Grammar

E.1.7 Punctuators
punctuator

[] () { } * , : = ; ... #

E.2 Phrase Structure Grammar
The following topics are discussed:

• Expressions

• Declarations

• Statements

• External Definitions

E.2.1 Expressions
constant-expression

conditional-expression

expression
assignment-expression{ , assignment-expression}(0)

assignment-expression
conditional-expression

or unary-expression assignment-operator assignment-expression

assignment-operator is one of
= *= /= %= += -= <<= >>= &= ^= |=

conditional-expression
logical-OR-expression 〈? expression : conditional-expression 〉

logical-OR-expression
logical-AND-expression{|| logical-AND-expression}(0)

logical-AND-expression
inclusive-OR-expression {&& inclusive-OR-expression}(0)

inclusive-OR-expression
exclusive-OR-expression {| exclusive-OR-expression}(0)

Phrase Structure Grammar 171

Appendices

exclusive-OR-expression
AND-expression {^ AND-expression}(0)

AND-expression
equality-expression {& equality-expression}(0)

equality-expression
relational-expression {==|!= relational-expression}(0)

relational-expression
shift-expression {<|>|<=|>= shift-expression}(0)

shift-expression
additive-expression {<<|>> additive-expression}(0)

additive-expression
multiplicative-expression {+|- multiplicative-expression}(0)

multiplicative-expression
cast-expression {*|/|% cast-expression}(0)

cast-expression
unary-expression

or (type-name) cast-expression

unary-expression
postfix-expression

or ++ | -- | sizeof unary-expression
or sizeof(type-name)
or unary-operator cast-expression

unary-operator is one of
& * + - ~ !

postfix-expression
primary-expression

or postfix-expression [expression]
or postfix-expression (〈argument-expression-list 〉)
or postfix-expression . identifier
or postfix-expression -> identifier
or postfix-expression ++
or postfix-expression --

argument-expression-list
assignment-expression {, assignment-expression}(0)

172 Phrase Structure Grammar

Formal C Grammar

primary-expression
identifier

or constant
or string-literal
or (expression)

E.2.2 Declarations
declaration

declaration-specifiers 〈init-declarator-list 〉;

declaration-specifiers
storage-class-specifier 〈declaration-specifiers 〉

or type-specifier 〈declaration-specifiers 〉

init-declarator-list
init-declarator {, init-declarator}(0)

init-declarator
declarator 〈= initializer 〉

storage-class-specifier
typedef | extern | static | auto | register

type-specifier
void | char | short | int | long | float |
double | signed | unsigned

or struct-or-union-specifier
or enum-specifier
or typedef-name
or type-qualifier

type-qualifier
const | volatile

or Open Watcom-type-qualifier

Open Watcom-type-qualifier
__based __fortran _Seg16
_Cdecl __huge __segment
__cdecl __inline __segname
__declspec __int64 __self
_Export __interrupt __stdcall
__export __loadds _Syscall
__far __near __syscall
_Far16 _Packed _System
__far16 _Pascal __unaligned
_Fastcall __pascal __watcall
__fastcall __saveregs

Phrase Structure Grammar 173

Appendices

struct-or-union-specifier
struct-or-union 〈identifier 〉 { struct-declaration-list }

or struct-or-union identifier

struct-or-union
struct | union

struct-declaration-list
{struct-declaration}(1)

struct-declaration
type-specifier-list struct-declarator-list;

type-specifier-list
{type-specifier}(1)

struct-declarator-list
struct-declarator {, struct-declarator}(0)

struct-declarator
declarator

or 〈declarator 〉 : constant-expression

enum-specifier
enum 〈identifier 〉 { enumerator-list }

or enum identifier

enumerator-list
enumerator {, enumerator}(0)

enumerator
enumeration-constant 〈= constant-expression 〉

declarator
 〈pointer 〉 direct-declarator

direct-declarator
identifier

or (declarator)
or direct-declarator [〈constant-expression 〉]
or direct-declarator (parameter-type-list)
or direct-declarator (〈identifier-list 〉)

pointer
{* 〈type-specifier-list 〉}(1)

174 Phrase Structure Grammar

Formal C Grammar

parameter-type-list
parameter-list 〈, ... 〉

parameter-list
parameter-declaration {, parameter-declaration}(0)

parameter-declaration
declaration-specifiers declarator

or declaration-specifiers 〈abstract-declarator 〉

identifier-list
identifier {, identifier}(0)

type-name
type-specifier-list 〈abstract-declarator 〉

abstract-declarator
pointer

or 〈pointer 〉 direct-abstract-declarator

direct-abstract-declarator
(abstract-declarator)

or 〈direct-abstract-declarator 〉 [〈constant-expression 〉]
or 〈direct-abstract-declarator 〉 (〈parameter-type-list 〉)

typedef-name
identifier

initializer
assignment-expression

or {initializer-list 〈, 〉}

initializer-list
initializer {, initializer}(0)

E.2.3 Statements
statement

labelled-statement
or compound-statement
or expression-statement
or selection-statement
or iteration-statement
or jump-statement

Phrase Structure Grammar 175

Appendices

labelled-statement
identifier : statement

or case constant-expression : statement
or default : statement

compound-statement
{ 〈declaration-list 〉 〈statement-list 〉}

declaration-list
{declaration}(1)

statement-list
{statement}(1)

expression-statement
 〈expression 〉;

selection-statement
if (expression) statement

or if (expression) statement else statement
or switch (expression) statement

iteration-statement
while (expression) statement

or do statement while (expression);
or for (〈expression 〉; 〈expression 〉; 〈expression 〉) statement

jump-statement
goto identifier;

or continue;
or break;
or return 〈expression 〉;

E.2.4 External Definitions
file

{external-definition}(1)

external-definition
function-definition

or declaration

function-definition
 〈declaration-specifiers 〉 declarator 〈declaration-list 〉

compound-statement

176 Phrase Structure Grammar

Formal C Grammar

E.3 Preprocessing Directives Grammar
preprocessing-file

group

group
{group-part}(1)

group-part
 〈pp-token 〉 new-line

or if-section
or control-line

if-section
if-group {elif-group}(0) 〈else-group 〉 endif-line

if-group
if const-expression new-line 〈group 〉
ifdef identifier new-line 〈group 〉
ifndef identifier new-line 〈group 〉

elif-group
elif constant-expression new-line 〈group 〉

else-group
else new-line 〈group 〉

endif-line
endif new-line

control-line
include pp-tokens new-line
define identifier 〈pp-tokens 〉 new-line
define identifier (〈identifier-list 〉) 〈pp-tokens 〉 new-line
undef identifier new-line
line pp-tokens new-line
error 〈pp-tokens 〉 new-line
pragma 〈pp-tokens 〉 new-line
new-line

pp-tokens
{preprocessing-token}(1)

preprocessing-token
header-name (only within a #include directive)

or identifier (no keyword distinction)
or constant
or string-literal
or operator
or punctuator
or each non-white-space character that cannot be one of the above

Preprocessing Directives Grammar 177

Appendices

header-name
<{h-char}(0)>

h-char
any character in the source character set except new-line and >

new-line
the new-line character

178 Preprocessing Directives Grammar

Translation Limits

F. Translation Limits

All standard-conforming C compilers must be able to translate and execute a program that contains one
instance of every one of the following limits. Each limit is the minimum limit (the smallest maximum) that
the compiler may impose.

The Open Watcom C16 and C32 compilers do not impose any arbitrary restrictions in any of these
areas. Restrictions arise solely because of memory limitations.

• 15 nesting levels of compound statements, iteration control structures (for, do/while, while),
and selection control structures (if, switch),

• 8 nesting levels of conditional inclusion (#if),

• 12 pointer, array and function declarators (in any order) modifying an arithmetic, structure, union or
incomplete type in a declaration,

• 31 nesting levels of parenthesized declarators within a full declarator,

• 32 nesting levels of parenthesized expressions within a full expression,

• 31 significant initial characters in an internal identifier or a macro name,

• 6 significant initial characters in an external identifier,

• 511 external identifiers in one translation unit (module),

• 127 identifiers with block scope declared in one block,

• 1024 macro identifiers simultaneously defined in one translation unit (module),

• 31 parameters in one function definition,

• 31 arguments in one function call,

• 31 parameters in one macro definition,

• 31 parameters in one macro invocation,

• 509 characters in a logical (continued) source line,

• 509 characters in a character string literal or wide string literal (after concatenation),

• 32767 bytes in an object,

• 8 nesting levels for #included files,

Translation Limits 179

Appendices

• 257 case labels for a switch statement (excluding those for any nested switch statements),

• 127 members in a single structure or union,

• 127 enumeration constants in a single enumeration,

• 15 levels of nested structure or union definitions in a single struct-declaration-list (structure or union
definition).

180 Translation Limits

Macros for Numerical Limits

G. Macros for Numerical Limits

Although the various numerical types may have different ranges depending on the implementation of the C
compiler, it is still possible to write programs that can adapt to these changing ranges. In most
circumstances, it is clear whether an integer object is sufficiently large to contain all necessary values for it,
regardless of whether or not the integer is only 16 bits.

However, a programmer may want to be able to conditionally compile code based on information about the
range of certain types. The header <limits.h> defines a set of macros that describe the range of the
various integer types. The header <float.h> defines another set of macros that describe the range and
other characteristics of the various floating-point types.

G.1 Numerical Limits for Integer Types
The following macros are replaced by constant expressions that may be used in #if preprocessing
directives. For a compiler to conform to the C language standard, the magnitude of the value of the
expression provided by the compiler must equal or exceed the ISO value given below, and have the same
sign. (Positive values must be greater than or equal to the ISO value. Negative values must be less than or
equal to the ISO value.) The values for the actual compilers are shown following the ISO value.

• the number of bits in the smallest object that is not a bit-field (byte)

Macro: CHAR_BIT Value

ISO >= 8
Open Watcom C16 and C32 8

• the minimum value for an object of type signed char

Macro: SCHAR_MIN Value

ISO <= -127
Open Watcom C16 and C32 -128

• the maximum value for an object of type signed char

Numerical Limits for Integer Types 181

Appendices

Macro: SCHAR_MAX Value

ISO >= 127
Open Watcom C16 and C32 127

• the maximum value for an object of type unsigned char

Macro: UCHAR_MAX Value

ISO >= 255
Open Watcom C16 and C32 255

• the minimum value for an object of type char

If char is unsigned (the default case)

Macro: CHAR_MIN Value

ISO 0
Open Watcom C16 and C32 0

If char is signed (by using the command-line switch to force it to be signed), then CHAR_MIN is
equivalent to SCHAR_MIN

Macro: CHAR_MIN Value

ISO <= -127
Open Watcom C16 and C32 -128

• the maximum value for an object of type char

If char is unsigned (the default case), then CHAR_MAX is equivalent to UCHAR_MAX

Macro: CHAR_MAX Value

ISO >= 255
Open Watcom C16 and C32 255

If char is signed (by using the command-line switch to force it to be signed), then CHAR_MAX is
equivalent to SCHAR_MAX

182 Numerical Limits for Integer Types

Macros for Numerical Limits

Macro: CHAR_MAX Value

ISO >= 127
Open Watcom C16 and C32 127

• the maximum number of bytes in a multibyte character, for any supported locale

Macro: MB_LEN_MAX Value

ISO >= 1
Open Watcom C16 and C32 2

• the minimum value for an object of type short int

Macro: SHRT_MIN Value

ISO <= -32767
Open Watcom C16 and C32 -32768

• the maximum value for an object of type short int

Macro: SHRT_MAX Value

ISO >= 32767
Open Watcom C16 and C32 32767

• the maximum value for an object of type unsigned short int

Macro: USHRT_MAX Value

ISO >= 65535
Open Watcom C16 and C32 65535

• the minimum value for an object of type int

Macro: INT_MIN Value

ISO <= -32767
Open Watcom C16 -32768
Open Watcom C32 -2147483648

Numerical Limits for Integer Types 183

Appendices

• the maximum value for an object of type int

Macro: INT_MAX Value

ISO >= 32767
Open Watcom C16 32767
Open Watcom C32 2147483647

• the maximum value for an object of type unsigned int

Macro: UINT_MAX Value

ISO >= 65535
Open Watcom C16 65535
Open Watcom C32 4294967295

• the minimum value for an object of type long int

Macro: LONG_MIN Value

ISO <= -2147483647
Open Watcom C16 and C32 -2147483648

• the maximum value for an object of type long int

Macro: LONG_MAX Value

ISO >= 2147483647
Open Watcom C16 and C32 2147483647

• the maximum value for an object of type unsigned long int

Macro: ULONG_MAX Value

ISO >= 4294967295
Open Watcom C16 and C32 4294967295

• the minimum value for an object of type long long int

Macro: LLONG_MIN Value

ISO <= -9223372036854775807
Open Watcom C16 and C32 -9223372036854775808

184 Numerical Limits for Integer Types

Macros for Numerical Limits

• the maximum value for an object of type long long int

Macro: LLONG_MAX Value

ISO >= 9223372036854775807
Open Watcom C16 and C32 9223372036854775807

• the maximum value for an object of type unsigned long long int

Macro: ULLONG_MAX Value

ISO >= 18446744073709551615
Open Watcom C16 and C32 18446744073709551615

G.2 Numerical Limits for Floating-Point Types
The following macros are replaced by expressions which are not necessarily constant. For a compiler to
conform to the C language standard, the magnitude of the value of the expression provided by the compiler
must equal or exceed the ISO value given below, and have the same sign. (Positive values must be greater
than or equal to the ISO value. Negative values must be less than or equal to the ISO value.) The values for
the actual compilers are shown following the ISO value. Most compilers will exceed some of these values.

For those characteristics that have three different macros, the macros that start with FLT_ refer to type
float, DBL_ refer to type double and LDBL_ refer to type long double.

• the radix (base) of representation for the exponent

Macro: FLT_RADIX Value

ISO >= 2
Open Watcom C16 and C32 2

• the precision, or number of digits in the floating-point mantissa, expressed in terms of the
FLT_RADIX

Macro: FLT_MANT_DIG Value

ISO no value specified
Open Watcom C16 and C32 23

Numerical Limits for Floating-Point Types 185

Appendices

Macro: DBL_MANT_DIG Value

ISO no value specified
Open Watcom C16 and C32 52

Macro: LDBL_MANT_DIG Value

ISO no value specified
Open Watcom C16 and C32 52

• the number of decimal digits of precision

Macro: FLT_DIG Value

ISO >= 6
Open Watcom C16 and C32 6

Macro: DBL_DIG Value

ISO >= 10
Open Watcom C16 and C32 15

Macro: LDBL_DIG Value

ISO >= 10
Open Watcom C16 and C32 15

• the minimum negative integer n such that FLT_RADIX raised to the power n, minus 1, is a
normalized floating-point number, or,

• the minimum exponent value in terms of FLT_RADIX, or,
• the base FLT_RADIX exponent for the floating-point value that is closest, but not equal, to
zero

Macro: FLT_MIN_EXP Value

ISO no value specified
Open Watcom C16 and C32 -127

186 Numerical Limits for Floating-Point Types

Macros for Numerical Limits

Macro: DBL_MIN_EXP Value

ISO no value specified
Open Watcom C16 and C32 -1023

Macro: LDBL_MIN_EXP Value

ISO no value specified
Open Watcom C16 and C32 -1023

• the minimum negative integer n such that 10 raised to the power n is in the range of normalized
floating-point numbers, or,

• the base 10 exponent for the floating-point value that is closest, but not equal, to zero

Macro: FLT_MIN_10_EXP Value

ISO <= -37
Open Watcom C16 and C32 -38

Macro: DBL_MIN_10_EXP Value

ISO <= -37
Open Watcom C16 and C32 -307

Macro: LDBL_MIN_10_EXP Value

ISO <= -37
Open Watcom C16 and C32 -307

• the maximum integer n such that FLT_RADIX raised to the power n, minus 1, is a representable
finite floating-point number, or,

• the maximum exponent value in terms of FLT_RADIX, or,
• the base FLT_RADIX exponent for the largest valid floating-point value

Macro: FLT_MAX_EXP Value

ISO no value specified
Open Watcom C16 and C32 127

Numerical Limits for Floating-Point Types 187

Appendices

Macro: DBL_MAX_EXP Value

ISO no value specified
Open Watcom C16 and C32 1023

Macro: LDBL_MAX_EXP Value

ISO no value specified
Open Watcom C16 and C32 1023

• the maximum integer n such that 10 raised to the power n is a representable finite floating-point
number, or,

• the base 10 exponent for the largest valid floating-point value

Macro: FLT_MAX_10_EXP Value

ISO >= 37
Open Watcom C16 and C32 38

Macro: DBL_MAX_10_EXP Value

ISO >= 37
Open Watcom C16 and C32 308

Macro: LDBL_MAX_10_EXP Value

ISO >= 37
Open Watcom C16 and C32 308

• the maximum representable finite floating-point number

Macro: FLT_MAX Value

ISO >= 1E+37
Open Watcom C16 and C32 3.402823466E+38

Macro: DBL_MAX Value

ISO >= 1E+37
Open Watcom C16 and C32 1.79769313486231560E+308

188 Numerical Limits for Floating-Point Types

Macros for Numerical Limits

Macro: LDBL_MAX Value

ISO >= 1E+37
Open Watcom C16 and C32 1.79769313486231560E+308

• the difference between 1.0 and the least value greater than 1.0 that is representable in the given
floating-point type, or,

• the smallest number eps such that (1.0 + eps) != 1.0

Macro: FLT_EPSILON Value

ISO <= 1E-5
Open Watcom C16 and C32 1.192092896E-15

Macro: DBL_EPSILON Value

ISO <= 1E-9
Open Watcom C16 and C32 2.2204460492503131E-16

Macro: LDBL_EPSILON Value

ISO <= 1E-9
Open Watcom C16 and C32 2.2204460492503131E-16

• the minimum positive normalized floating-point number

Macro: FLT_MIN Value

ISO <= 1E-37
Open Watcom C16 and C32 1.175494351E-38

Macro: DBL_MIN Value

ISO <= 1E-37
Open Watcom C16 and C32 2.22507385850720160E-308

Macro: LDBL_MIN Value

ISO <= 1E-37
Open Watcom C16 and C32 2.22507385850720160E-308

As discussed in the section "Integer to Floating-Point Conversion", the macro FLT_ROUNDS is replaced by
a constant expression whose value indicates what kind of rounding occurs following a floating-point
operation. The following table gives the value of FLT_ROUNDS and its meaning:

Numerical Limits for Floating-Point Types 189

Appendices

FLT_ROUNDS Technique

-1 indeterminable
0 toward zero
1 to nearest number
2 toward positive infinity
3 toward negative infinity

If FLT_ROUNDS has any other value, the rounding mechanism is implementation-defined.

For the Open Watcom C16 and C32 compiler, the value of FLT_ROUNDS is 1, meaning that
floating-point values are rounded to the nearest representable number.

190 Numerical Limits for Floating-Point Types

Implementation-Defined Behavior

H. Implementation-Defined Behavior

This appendix describes the behavior of Open Watcom C16 and C32 when the standard describes the
behavior as implementation-defined. The term describing each behavior is taken directly from the
ISO/ANSI C Language standard. The numbers in parentheses at the end of each term refers to the section
of the standard that discusses the behavior.

H.1 Translation
How a diagnostic is identified (5.1.1.3).

A diagnostic message appears as:

filename(line-number): error-type! msg-number: msg_text

where:

filename is the name of the source file where the error was detected. If the error was found in
a file included from the source file specified on the compiler command line, then the
name of the included file will appear.

line-number is the source line number in the named file where the error was detected.

error-type is either the word Error for errors that prevent the compile from completing
successfully (no code will be generated), or Warning for conditions detected by
the compiler that may not do what the programmer expected, but are otherwise
valid. Warnings will not prevent the compiler from generating code. The issuance
of warnings may be controlled by a command-line switch. See the User’s Guide for
details.

msg-number is the letter E (for errors) followed by a four digit error number, or the letter W (for
warnings) followed by a three digit warning number. Each message has its own
unique message number.

msg-text is a descriptive message indicating the problem.

Example:

test.c(35): Warning! W301: No prototype found for ’GetItem’
test.c(57): Error! E1009: Expecting ’}’ but found ’,’

Translation 191

Appendices

H.2 Environment
The semantics of the arguments to main (5.1.2.2.1).

Each blank-separated token, except within quoted strings, on the command line is made into a string
that is an element of argv. Quoted strings are maintained as one element.

For example, for the command line,

pgm 2+ 1 tokens "one token"

argc would have the value 5, and the five elements of argv would be,

pgm
2+
1
tokens
one token

What constitutes an interactive device (5.1.2.3).

For Open Watcom C16 and C32, the keyboard and the video display are considered interactive
devices.

H.3 Identifiers
The number of significant initial characters (beyond 31) in an identifier without external linkage
(6.1.2).

Unlimited.

The number of significant initial characters (beyond 6) in an identifier with external linkage (6.1.2).

The Open Watcom C16 and C32 compilers do not impose a limit. The Open Watcom Linker limits
significant characters to 40.

Whether case distinctions are significant in an identifier with external linkage (6.1.2).

The Open Watcom C16 and C32 compilers produce object names in mixed case. The Open Watcom
Linker provides an option to respect or ignore case when resolving linkages. By default, the linker
respects case. See the Open Watcom Linker User’s Guide for details.

H.4 Characters
The members of the source and execution character sets, except as explicitly specified in the standard
(5.2.1).

The full IBM PC character set is available in both the source and execution character sets. The set of
values between 0x20 and 0x7F are the ASCII character set.

192 Characters

Implementation-Defined Behavior

The shift states used for the encoding of multibyte characters (5.2.1.2).

There are no shift states in the support for multibyte characters.

The number of bits in a character in the execution character set (5.2.4.2.1).

8

The mapping of members of the source character set (in character constants and string literals) to
members of the execution character set (6.1.3.4).

Both the source and execution character sets are the full IBM PC character set for whichever code
page is in effect. In addition, the following table shows escape sequences available in the source
character set, and what they translate to in the execution character set.

Escape Hex
Sequence Value Meaning

\a 07 Bell or alert
\b 08 Backspace
\f 0C Form feed
\n 0A New-line
\r 0D Carriage return
\t 09 Horizontal tab
\v 0B Vertical tab
\’ 27 Apostrophe or single quote
\" 22 Double quote
\? 3F Question mark
\\ 5C Backslash
\ddd Octal value
\xddd Hexadecimal value

The value of an integer character constant that contains a character or escape sequence that is not
represented in the execution character set or the extended character set for a wide character constant
(6.1.3.4).

Not possible. Both the source and execution character sets are the IBM PC character set. Thus, all
characters in the source character set map directly to the execution character set.

The value of an integer character constant that contains more than one character or a wide character
constant that contains more than one multibyte character (6.1.3.4).

A multi-character constant is stored with the right-most character in the lowest-order (least
significant) byte, and subsequent characters (moving to the left) being placed in higher-order (more
significant) bytes. Up to four characters may be placed in a character constant.

The current locale used to convert multibyte characters into corresponding wide characters (codes)
for a wide character constant (6.1.3.4).

The Open Watcom C16 and C32 compilers currently support only the "C" locale, using North
American English, and translates code page 437 to UNICODE.

Characters 193

Appendices

To support multibyte characters, a command line switch can be used to indicate which multibyte
character set to use. See the User’s Guide for details.

Whether a plain char has the same range of values as signed char or unsigned char (6.2.1.1).

Open Watcom C16 and C32 treat char as unsigned, although a compiler command line switch can
be used to make it signed.

H.5 Integers
The representations and sets of values of the various types of integers (6.1.2.5).

Integers are stored using 2’s complement form. The high bit of each signed integer is a sign bit. If the
sign bit is 1, the value is negative.

The ranges of the various integer types are described in the section "Integer Types".

The result of converting an integer to a shorter signed integer, or the result of converting an
unsigned integer to a signed integer of equal length, if the value cannot be represented (6.2.1.2).

When converting to a shorter type, the high-order bits of the longer value are discarded, and the
remaining bits are interpreted according to the new type.

For example, converting the signed long integer -15584170 (hexadecimal 0xFF123456) to a
signed short integer yields the result 13398 (hexadecimal 0x3456).

When converting an unsigned integer to a signed integer of equal length, the bits are simply
re-interpreted according to the new type.

For example, converting the unsigned short integer 65535 (hexadecimal 0xFFFF) to a signed short
integer yields the result -1 (hexadecimal 0xFFFF).

The results of bitwise operations on signed integers (6.3).

The sign bit is treated as any other bit during bitwise operations. At the completion of the operation,
the new bit pattern is interpreted according to the result type.

The sign of the remainder on integer division (6.3.5).

The remainder has the same sign as the numerator (left operand).

The result of a right shift of a negative-valued signed integral type (6.3.7).

A right shift of a signed integer will leave the higher, vacated bits with the original value of the high
bit. In other words, the sign bit is propogated to fill bits vacated by the shift.

For example, the result of ((short) 0x0123) >> 4 would be 0x0012. The result of
((short) 0xFEFE) >> 4 will be 0xFFEF.

194 Integers

Implementation-Defined Behavior

H.6 Floating Point
The representations and sets of values of the various types of floating-point numbers (6.1.2.5).

These are discussed in the section "Floating-Point Types". The floating-point format used is the IEEE
Standard for Binary Floating-Point Arithmetic as defined in the ANSI/IEEE Standard 754-1985.

The direction of truncation when an integral number is converted to a floating-point number that
cannot exactly represent the original value (6.2.1.3).

Truncation is only possible when converting a long int (signed or unsigned) to float. The 24
most-significant bits (including sign bit) are used. The 25th is examined, and if it is 1, the value is
rounded up by adding one to the 24-bit value. The remaining bits are ignored.

The direction of truncation or rounding when a floating-point number is converted to a narrower
floating-point number (6.2.1.4).

The value is rounded to the nearest value in the smaller type.

H.7 Arrays and Pointers
The type of integer required to hold the maximum size of an array — that is, the type of the sizeof
operator, size_t (6.3.3.4, 7.1.1).

unsigned int

The result of casting an integer to a pointer or vice versa (6.3.4).

Open Watcom C16 conversion of pointer to integer:

Pointer short int
Type int long int

near result is pointer value result is DS register in
high-order 2 bytes, pointer
value in low-order 2 bytes

far segment is discarded, result result is segment in high-
huge is pointer offset (low-order order 2 bytes, offset in

2 bytes of pointer) low-order 2 bytes

Arrays and Pointers 195

Appendices

Open Watcom C16 conversion of integer to pointer:

Integer far pointer
Type near pointer huge pointer

short int result is integer value result segment is DS
int register, offset is

 integer value

long int result is low-order 2 bytes result segment is high-
of integer value order 2 bytes, offset is
 low-order 2 bytes

Open Watcom C32 conversion of pointer to integer:

Pointer int
Type short long int

near result is low-order 2 bytes result is pointer value
of pointer value

far segment is discarded, result segment is discarded, result
huge is low-order 2 bytes of is pointer offset

pointer value

Open Watcom C32 conversion of integer to pointer:

Integer far pointer
Type near pointer huge pointer

short int result is integer value, result segment is DS
with zeroes for high-order register, offset is integer
2 bytes value, with zeroes for
 high-order 2 bytes

int result is integer value result segment is DS
long int register, offset is

 integer value

The type of integer required to hold the difference between two pointers to elements of the same
array, ptrdiff_t (6.3.6, 7.1.1).

If the huge memory model is being used, ptrdiff_t has type long int.

For all other memory models, ptrdiff_t has type int.

If two huge pointers are subtracted and the huge memory model is not being used, then the result type
will be long int even though ptrdiff_t is int.

196 Arrays and Pointers

Implementation-Defined Behavior

H.8 Registers
The extent to which objects can actually be placed in registers by use of the register storage-class
specifier (6.5.1).

The Open Watcom C16 and C32 compilers may place any object that is sufficiently small, including a
small structure, in one or more registers.

The number of objects that can be placed in registers varies, and is decided by the compiler. The
keyword register does not control the placement of objects in registers.

H.9 Structures, Unions, Enumerations and Bit-Fields
A member of a union object is accessed using a member of a different type (6.3.2.3).

The behavior is undefined. Whatever bit values are present as were stored via one member will be
extracted via another.

The padding and alignment of members of structures (6.5.2.1).

The Open Watcom C16 and C32 compilers align structure members by default. A command line
switch, or the pack pragma, may be used to override the default. See the User’s Guide for default
values and other details.

Whether a "plain" int bit-field is treated as a signed int bit-field or as an unsigned int
bit-field (6.5.2.1).

signed int

The order of allocation of bit-fields within a unit (6.5.2.1).

Low-order (least significant) bit to high-order bit.

Whether a bit-field can straddle a storage-unit boundary (6.5.2.1).

Bit-fields may not straddle storage-unit boundaries. If there is insufficient room to store a subsequent
bit-field in a storage-unit, then it will be placed in the next storage-unit.

The integer type chosen to represent the values of an enumeration type (6.5.2.2).

By default, Open Watcom C16 and C32 will use the smallest integer type that can accommodate all
values in the enumeration. The first appropriate type will be chosen according to the following table:

Structures, Unions, Enumerations and Bit-Fields 197

Appendices

Type Smallest Value Largest Value

signed char -128 127
unsigned char 0 255
signed short -32768 32767
unsigned short 0 65535
signed long -2147483648 2147483647
unsigned long 0 4294967295
signed long long -9223372036854775808 9223372036854775807
unsigned long long 0 18446744073709551615

Both compilers have a command-line switch that force all enumerations to type int. See the User’s
Guide for details.

H.10 Qualifiers
What constitutes an access to an object that has volatile-qualified type (6.5.5.3).

Any reference to a volatile object is also an access to that object.

H.11 Declarators
The maximum number of declarators that may modify an arithmetic, structure or union type (6.5.4).

Limited only by available memory.

H.12 Statements
The maximum number of case values in a switch statement (6.6.4.2).

Limited only by available memory.

H.13 Preprocessing Directives
Whether the value of a single-character character constant in a constant expression that controls
conditional inclusion matches the value of the same character constant in the execution character set.
Whether such a character constant may have a negative value (6.8.1).

The character sets are the same so characters will match. Character constants are unsigned quantities,
so no character will be negative.

The method for locating includable source files (6.8.2).

See the User’s Guide for full details of how included files are located.

The support of quoted names for includable source files (6.8.2).

198 Preprocessing Directives

Implementation-Defined Behavior

See the User’s Guide for full details of how included files are located.

The mapping of source file character sequences (6.8.2).

The source and execution character sets are the same. Escape sequences are not supported in
preprocessor directives.

The behavior of each recognized #pragma directive (6.8.6).

See the User’s Guide.

The definitions for __DATE__ and__TIME__ when respectively, the date and time of translation
are not available (6.8.8).

The date and time are always available.

H.14 Library Functions
The null pointer constant to which the macro NULL expands (7.1.6).

For Open Watcom C16, the NULL macro expands to 0 for the small and medium (small data) memory
models, and to 0L for the compact, large and huge (big data) memory models.

For Open Watcom C32, the NULL macro expands to 0.

The implementation-defined behavior of the library functions is described in the Open Watcom C Library
Reference manual.

Library Functions 199

Appendices

200 Library Functions

Examples of Declarations

I. Examples of Declarations

This chapter presents a series of examples of declarations of objects and functions. Along with each
example is a description that indicates how to read the declaration.

This chapter may be used as a "cookbook" for declarations. Some complicated but commonly required
declarations are given here.

The first examples are very simple, and build in complexity. Some of the examples given near the end of
each section are unlikely to ever be required in a real program, but hopefully they will provide an
understanding of how to read and write C declarations.

To reduce the complexity and to better illustrate how a small difference in the declaration can mean a big
difference in the meaning, the following rules are followed:

1. if an object is being declared, it is called x or X,

2. if a function is being declared, it is called F,

3. if an object is being declared, it usually has type int, although any other type may be
substituted,

4. if a function is being declared, it usually returns type int, although any other type may be
substituted.

Storage class specifiers (extern, static, auto or register) have purposely been omitted.

I.1 Object Declarations
Here are some examples of object (variable) declarations:

int x;
2 1
(1)x is an (2)integer.

int * x;
3 2 1
(1)x is a (2)pointer to an (3)integer.

Object Declarations 201

Appendices

int ** x;
4 32 1
(1)x is a (2)pointer to a (3)pointer to an (4)integer.

const int x;

2 3 1
(1)x is a (2)constant (3)integer.

int const x;
3 2 1
(1)x is a (2)constant (3)integer (same as above).

const int * x;

3 4 2 1
(1)x is a (2)pointer to a (3)constant (4)integer. The value of x may change, but the integer that it
points to may not be changed. In other words, *x cannot be modified.

int * const x;
4 3 2 1
(1)x is a (2)constant (3)pointer to an (4)integer. The value of x may not change, but the integer
that it points to may change. In other words, x will always point at the same location, but the
contents of that location may vary.

const int * const x;

4 5 3 2 1
(1)x is a (2)constant (3)pointer to a (4)constant (5)integer. The value of x may not change, and
the integer that it points to may not change. In other words, x will always point at the same
location, which cannot be modified via x.

int x[];
3 12
(1)x is an (2)array of (3)integers.

int x[53];
4 123
(1)x is an (2)array of (3)53 (4)integers.

int * x[];
4 3 12
(1)x is an (2)array of (3)pointers to (4)integer.

int (*x)[];
4 21 3
(1)x is a (2)pointer to an (3)array of (4)integers.

int * (*x)[];
5 4 21 3
(1)x is a (2)pointer to an (3)array of (4)pointers to (5)integer.

202 Object Declarations

Examples of Declarations

int (*x)();
4 21 3
(1)x is a (2)pointer to a (3)function returning an (4)integer.

int (*x[25])();
6 4123 5
(1)x is an (2)array of (3)25 (4)pointers to (5)functions returning an (6)integer.

I.2 Function Declarations
Here are some examples of function declarations:

int F();
3 12
(1)F is a (2)function returning an (3)integer.

int * F();
4 3 12
(1)F is a (2)function returning a (3)pointer to an (4)integer.

int (*F())();
5 312 4
(1)F is a (2)function returning a (3)pointer to a (4)function returning an (5)integer.

int * (*F())();
6 5 312 4
(1)F is a (2)function returning a (3)pointer to a (4)function returning a (5)pointer to an
(6)integer.

int (*F())[];
5 312 4
(1)F is a (2)function returning a (3)pointer to an (4)array of (5)integers.

int (*(*F())[])();
7 5 312 4 6
(1)F is a (2)function returning a (3)pointer to an (4)array of (5)pointers to (6)functions returning
an (7)integer.

int * (*(*F())[])();
8 7 5 312 4 6
(1)F is a (2)function returning a (3)pointer to an (4)array of (5)pointers to (6)functions returning
a (7)pointer to an (8)integer.

I.3 _ _far, _ _near and _ _huge Declarations
The following examples illustrate the use of the __far and__huge keywords.

The use of the __near keyword is symmetrical with the use of the __far keyword, so no examples of
__near are shown.

_ _far, _ _near and _ _huge Declarations 203

Appendices

int __far X;
3 2 1
(1)X is a (2)far (3)integer.

int * __far x;
4 3 2 1
(1)x is (2)far, and is a (3)pointer to an (4)integer.

int __far * x;
4 2 3 1
(1)x is a (2)far (3)pointer to an (4)integer.

int __far * __far x;
5 3 4 2 1
(1)x is (2)far, and is a (3)far (4)pointer to an (5)integer.

int __far X[];
4 2 13
(1)X is a (2)far (3)array of (4)integers.

int __huge X[];
4 2 13
(1)x is a (2)huge (3)array of (4)integers (X is an array that can exceed 64K in size.)

int * __far X[];
5 4 2 13
(1)X is a (2)far (3)array of (4)pointers to (5)integers.

int __far * X[];
5 3 4 12
(1)X is an (2)array of (3)far (4)pointers to (5)integers.

int __far * __far X[];
6 4 5 2 13
(1)X is a (2)far (3)array of (4)far (5)pointers to (6)integers.

int __far F();
4 2 13
(1)F is a (2)far (3)function returning an (4)integer.

int * __far F();
5 4 2 13
(1)F is a (2)far (3)function returning a (4)pointer to an (5)integer.

int __far * F();
5 3 4 12
(1)F is a (2)function returning a (3)far (4)pointer to an (5)integer.

204 _ _far, _ _near and _ _huge Declarations

Examples of Declarations

int __far * __far F();
6 4 5 2 13
(1)F is a (2)far (3)function returning a (4)far (5)pointer to an (6)integer.

int (__far * x)();
5 2 3 1 4
(1)x is a (2)far (3)pointer to a (4)function returning an (5)integer.

int __far * (* x)();
6 4 5 2 1 3
(1)x is a (2)pointer to a (3)function returning a (4)far (5)pointer to an (6)integer.

int __far * (__far * x)();
7 5 6 2 3 1 4
(1)x is a (2)far (3)pointer to a (4)function returning a (5)far (6)pointer to an (7)integer.

I.4 _ _interrupt Declarations
The following example illustrates the use of the __interrupt keyword.

void __interrupt __far F();
5 3 2 14
(1)F is a (2)far (3)interrupt (4)function returning (5)nothing.

_ _interrupt Declarations 205

Appendices

206 _ _interrupt Declarations

A Sample Program

J. A Sample Program

This chapter presents an entire C program, to illustrate many of the features of the language, and to
illustrate elements of programming style.

This program implements a memo system suitable for maintaining a set of memos, and displaying them on
the screen. The program allows the user to display memos relevant to today’s date, move through the
memos adding new ones and replacing or deleting existing ones. The program displays help information
whenever an invalid action is entered, or when the sole parameter to the program is a question mark.

The program is in complete conformance to the ISO C standard. It should be able to run, without
modification, on any system that provides an ISO-conforming C compiler.

J.1 The memos.h File
The source file memos.h contains the structures used for storing the memos:

/* This structure is for an individual line in a memo.
*/

typedef struct text_line {
struct text_line * next;
char text[1];

} TEXT_LINE;

/* This structure is the head of an individual memo.
*/

typedef struct memo_el {
struct memo_el * prev;
struct memo_el * next;
TEXT_LINE * text;
char date[9];

} MEMO_EL;

The memos.h File 207

Appendices

J.2 The memos.c File
The source for the program follows:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <time.h>

#include "memos.h"

/* This program implements a simple memo facility.
* Memos may be added to a memo file, displayed
* on the screen, and deleted.
*
* Modified by reason
* ======== == ======
* 87/10/02 Steve McDowell Initial implementation.
* 88/09/20 Steve McDowell Fixed up some style issues,
* introduced use of TRUE and
* FALSE.
*/

/* Define some constants to make the code more readable.
*/

#define TRUE 1
#define FALSE 0
#define NULLCHAR ’\0’

static const char FileName[] = { "memos.db" };
static const char TempName[] = { "tempmemo.db" };

static MEMO_EL * MemoHead = NULL;
static int MemosModified = FALSE;
static int QuitFlag = TRUE;

typedef enum {
INVALID,
HELP,
ADD,
DELETE,
REPLACE,
SHOW,
UP,
DOWN,
TOP,
TODAY,
SAVE,
QUIT

} ACTION;

/* This table maps action keywords onto the "actions" defined
* above. The table also defines short forms for the keywords.
*/

typedef struct {
ACTION act;
char * keyword;

} ACTION_MAP;

208 The memos.c File

A Sample Program

static ACTION_MAP KeywordMap[] = {
HELP, "help",
HELP, "h",
ADD, "add",
ADD, "a",
DELETE, "delete",
DELETE, "del",
REPLACE, "replace",
REPLACE, "rep",
SHOW, "show",
SHOW, "sh",
UP, "up",
UP, "u",
DOWN, "down",
DOWN, "d",
DOWN, "",
TOP, "top",
TODAY, "today",
TODAY, "tod",
SAVE, "save",
SAVE, "sa",
QUIT, "quit",
QUIT, "q",

INVALID, "" };

/* Maximum buffer length (maximum length of line of memo).
*/

#define MAXLEN 80

/* Function prototypes.
*/

static TEXT_LINE * AddLine();
static MEMO_EL * AddMemo();
static MEMO_EL * DeleteMemo();
static MEMO_EL * DoActions();
static MEMO_EL * DoDownAction();
static MEMO_EL * DoUpAction();
static MEMO_EL * EnterAMemo();
static ACTION GetAction();
static void * MemoMAlloc();
static ACTION PromptAction();
static ACTION ReadAction();
static MEMO_EL * ReadAMemo();
static MEMO_EL * ShowTodaysMemos();

extern int main(int argc, char * argv[])
/**/
{

int index;
MEMO_EL * el;

printf("Memo facility\n");

/* Check for a single argument that is a question mark,
* If found, then display the usage notes.
*/

if(argc == 2 && strcmp(argv[1], "?") == 0) {
Usage();
exit(0);

}
ReadMemos();
MemosModified = FALSE;
QuitFlag = FALSE;

The memos.c File 209

Appendices

/* Use the command line parameters, if any, as the first
* actions to be performed on the memos.
*/

el = NULL;
for(index = 1; index < argc; ++index) {

el = DoActions(el, GetAction(argv[index]));
if(QuitFlag) {

return(FALSE);
}

}
HandleMemoActions(el);
return(FALSE);

}

static void ReadMemos(void)
/***************************/

/* Read the memos file, building the structure to contain it.
*/

{
FILE * fid;
MEMO_EL * new_el;
MEMO_EL * prev_el;
int mcount;

fid = fopen(FileName, "r");
if(fid == NULL) {

printf("Memos file not found."
" Starting with no memos.\n");

return;
}

/* Loop reading entire memos.
*/

prev_el = NULL;
for(mcount = 0;; mcount++) {

new_el = ReadAMemo(fid);
if(new_el == NULL) {

printf("%d memo(s) found.\n", mcount);
fclose(fid);
return;

}
if(prev_el == NULL) {

MemoHead = new_el;
new_el->prev = NULL;

} else {
prev_el->next = new_el;
new_el->prev = prev_el;

}
new_el->next = NULL;
prev_el = new_el;

}
}

static int ReadLine(char buffer[], int len, FILE * fid)
/***/

/* Read a line from the memos file. Handle any I/O errors and
* EOF. Return the length read, not counting the newline on
* the end.
*/

{
if(fgets(buffer, len, fid) == NULL) {

if(feof(fid)) {
return(EOF);

}
perror("Error reading memos file");
abort();

}
return(strlen(buffer) - 1);

}

210 The memos.c File

A Sample Program

static MEMO_EL * ReadAMemo(FILE * fid)
/**************************************/

/* Read one memo, creating the memo structure and filling it
* in. Return a pointer to the memo (NULL if none read).
*/

{
MEMO_EL * el;
int len;
TEXT_LINE * line;
char buffer[MAXLEN];

len = ReadLine(buffer, MAXLEN, fid);
if(len == EOF) {

return(NULL);
}

/* First line must be of the form "Date:" or "Date:YY/MM/DD":
*/

if((len != 5 && len != 13)
|| strncmp(buffer, "Date:", 5) != 0) {

BadFormat();
}
buffer[len] = NULLCHAR;
el = MemoMAlloc(sizeof(MEMO_EL));
el->text = NULL;
strcpy(el->date, buffer + 5);
line = NULL;
for(;;) {

len = ReadLine(buffer, MAXLEN, fid);
if(len == EOF) {

BadFormat();
}
buffer[len] = NULLCHAR;
if(strcmp(buffer, "====") == 0) {

return(el);
}
line = AddLine(buffer, el, line);

}
}

static TEXT_LINE * AddLine(char buffer[],
MEMO_EL * el,
TEXT_LINE * prevline)

/**/

/* Add a line of text to the memo, taking care of all the
* details of modifying the structure.
*/

{
TEXT_LINE * line;

line = MemoMAlloc(sizeof(TEXT_LINE) + strlen(buffer));
strcpy(line->text, buffer);
line->next = NULL;
if(prevline == NULL) {

el->text = line;
} else {

prevline->next = line;
}
return(line);

}

The memos.c File 211

Appendices

static ACTION PromptAction(void)
/********************************/

/* The user didn’t specify an action on the command line,
* so prompt for it.
*/

{
ACTION act;

for(;;) {
printf("\nEnter an action:\n");
act = ReadAction();
if(act != INVALID) {

return(act);
}
printf("\nThat selection was not valid.\n");
Help();

}
}

static ACTION ReadAction(void)
/******************************/

/* Read an action from the terminal.
* Return the action code.
*/

{
char buffer[80];

if(gets(buffer) == NULL) {
perror("Error reading action");
abort();

}
return(GetAction(buffer));

}

static ACTION GetAction(char buffer[])
/**************************************/

/* Given the string in the buffer, return the action that
* corresponds to it.
* The string in the buffer is first zapped into lower case
* so that mixed-case entries are recognized.
*/

{
ACTION_MAP * actmap;
char * bufptr;

for(bufptr = buffer; *bufptr != NULLCHAR; ++bufptr) {
*bufptr = tolower(*bufptr);

}
for(actmap = KeywordMap; actmap->act != INVALID; ++actmap) {

if(strcmp(buffer, actmap->keyword) == 0) break;
}
return(actmap->act);

}

static void HandleMemoActions(MEMO_EL * el)
/***/

/* Handle all the actions entered from the keyboard.
*/

{
for(;;) {

el = DoActions(el, PromptAction());
if(QuitFlag) break;

}
}

212 The memos.c File

A Sample Program

static MEMO_EL * DoActions(MEMO_EL * el, ACTION act)
/**/

/* Perform one action on the memos.
*/

{
MEMO_EL * new_el;
MEMO_EL * prev_el;

switch(act) {
case HELP:

Help();
break;

case ADD:
new_el = AddMemo(el);
if(new_el != NULL) {

el = new_el;
MemosModified = TRUE;

}
break;

case DELETE:
el = DeleteMemo(el);
MemosModified = TRUE;
break;

case REPLACE:
prev_el = el;
new_el = AddMemo(el);
if(new_el != NULL) {

DeleteMemo(prev_el);
MemosModified = TRUE;

}
break;

case SHOW:
DisplayMemo(el);
break;

case UP:
el = DoUpAction(el);
break;

case DOWN:
el = DoDownAction(el);
break;

case TOP:
el = NULL;
break;

case TODAY:
el = ShowTodaysMemos();
break;

case SAVE:
if(SaveMemos()) {

MemosModified = FALSE;
}
break;

case QUIT:
if(WantToQuit()) {

QuitFlag = TRUE;
el = NULL;

}
}
return(el);

}

The memos.c File 213

Appendices

static MEMO_EL * AddMemo(MEMO_EL * el)
/**************************************/

/* Add a memo following the current one.
*/

{
MEMO_EL * new_el;
MEMO_EL * next;

new_el = EnterAMemo();
if(new_el == NULL) {

return(NULL);
}
if(el == NULL) {

next = MemoHead;
MemoHead = new_el;

} else {
next = el->next;
el->next = new_el;

}
new_el->prev = el;
new_el->next = next;
if(next != NULL) {

next->prev = new_el;
}
return(new_el);

}

static MEMO_EL * EnterAMemo(void)
/*********************************/

/* Read a memo from the keyboard, creating the memo structure
* and filling it in. Return a pointer to the memo (NULL if
* none read).
*/

{
MEMO_EL * el;
int len;
TEXT_LINE * line;
char buffer[MAXLEN];

printf("What date do you want the memo displayed"
" (YY/MM/DD)?\n");

if(gets(buffer) == NULL) {
printf("Error reading from terminal.\n");
return(NULL);

}
len = strlen(buffer);
if(len != 0

&& (len != 8
|| buffer[2] != ’/’
|| buffer[5] != ’/’)) {

printf("Date is not valid.\n");
return(NULL);

}
el = MemoMAlloc(sizeof(MEMO_EL));
el->text = NULL;
strcpy(el->date, buffer);
line = NULL;
printf("\nEnter the text of the memo.\n");
printf("To terminate the memo,"

" enter a line starting with =\n");
for(;;) {

if(gets(buffer) == NULL) {
printf("Error reading from terminal.\n");
return(NULL);

}

214 The memos.c File

A Sample Program

if(buffer[0] == ’=’) {
return(el);

}
line = AddLine(buffer, el, line);

}
}

static MEMO_EL * DeleteMemo(MEMO_EL * el)
/***/

/* Delete the current memo.
* Return a pointer to another memo, usually the following one.
*/

{
MEMO_EL * prev;
MEMO_EL * next;
MEMO_EL * ret_el;

if(el == NULL) {
return(MemoHead);

}
prev = el->prev;
next = el->next;
ret_el = next;
if(ret_el == NULL) {

ret_el = prev;
}

/* If it’s the first memo, set a new MemoHead value.
*/

if(prev == NULL) {
MemoHead = next;
if(next != NULL) {

next->prev = NULL;
}

} else {
prev->next = next;
if(next != NULL) {

next->prev = prev;
}

}
DisposeMemo(el);
return(ret_el);

}

static MEMO_EL * DoUpAction(MEMO_EL * el)
/***/

/* Perform the UP action, including displaying the memo.
*/

{
if(el == NULL) {

DisplayTop();
} else {

el = el->prev;
DisplayMemo(el);

}
return(el);

}

The memos.c File 215

Appendices

static MEMO_EL * DoDownAction(MEMO_EL * el)
/***/

/* Perform the DOWN action, including displaying the memo.
*/

{
MEMO_EL * next_el;

next_el = (el == NULL) ? MemoHead : el->next;
if(next_el == NULL) {

printf("No more memos.\n");
} else {

el = next_el;
DisplayMemo(el);

}
return(el);

}

static MEMO_EL * ShowTodaysMemos(void)
/**************************************/

/* Show all memos that either:
* (1) match today’s date
* (2) don’t have a date stored.
* Return a pointer to the last displayed memo.
*/

{
MEMO_EL * el;
MEMO_EL * last_el;
time_t timer;
struct tm ltime;
char date[9];

/* Get today’s time in YY/MM/DD format.
*/

time(&timer);
ltime = *localtime(&timer);
strftime(date, 9, "%y/%m/%d", <ime);
last_el = NULL;
for(el = MemoHead; el != NULL; el = el->next) {

if(el->date[0] == NULLCHAR
|| strcmp(date, el->date) == 0) {

DisplayMemo(el);
last_el = el;

}
}
return(last_el);

}

static void DisplayMemo(MEMO_EL * el)
/*************************************/

/* Display a memo on the screen.
*/

{
TEXT_LINE * tline;

if(el == NULL) {
DisplayTop();
return;

}
if(el->date[0] == NULLCHAR) {

printf("\nUndated memo\n");
} else {

printf("\nDated: %s\n", el->date);
}
for(tline = el->text; tline != NULL; tline = tline->next) {

printf(" %s\n", tline->text);
}

}

216 The memos.c File

A Sample Program

static int SaveMemos(void)
/**************************/

/* Save the memos to the memos file.
*/

{
FILE * fid;
MEMO_EL * el;
TEXT_LINE * tline;
char buffer[20];

if(MemoHead == NULL) {
printf("No memos to save.\n");
return(FALSE);

}

/* Open a temporary filename in case something goes wrong
* during the save.
*/

fid = fopen(TempName, "w");
if(fid == NULL) {

printf("Unable to open \"%s\" for writing.\n", TempName);
printf("Save not performed.\n");
return(FALSE);

}
for(el = MemoHead; el != NULL; el = el->next) {

sprintf(buffer, "Date:%s", el->date);
if(!WriteLine(buffer, fid)) {

return(FALSE);
}
tline = el->text;
for(; tline != NULL; tline = tline->next) {

if(!WriteLine(tline->text, fid)) {
return(FALSE);

}
}
if(!WriteLine("====", fid)) {

return(FALSE);
}

}

/* Now get rid of the old file, if it’s there, then rename
* the new one.
*/

fclose(fid);
fid = fopen(FileName, "r");
if(fid != NULL) {

fclose(fid);
if(remove(FileName) != 0) {

perror("Can’t remove old memos file");
return(FALSE);

}
}
if(rename(TempName, FileName) != 0) {

perror("Can’t rename new memos file");
return(FALSE);

}
return(TRUE);

}

static int WriteLine(char * text, FILE * fid)
/***/
{

if(fprintf(fid, "%s\n", text) < 0) {
perror("Error writing memos file");
return(FALSE);

}
return(TRUE);

}

The memos.c File 217

Appendices

/* Routines for displaying HELP and other simple text.
*/

static void Usage(void)
/***********************/
{

printf("Usage:\n");
printf(" memos ?\n");
printf(" displays this text\n");
printf(" or\n");
printf(" memos\n");
printf(" prompts for all actions.\n");
printf(" or\n");
printf(" memos action\n");
printf(" performs the action.\n");
printf(" More than one action may be specified.\n");
printf(" action is one of:\n");
ShowActions();

}

static void ShowActions(void)
/*****************************/
{

printf(" Help (display this text)\n");
printf(" Add (add new memo here)\n");
printf(" DELete (delete current memo)\n");
printf(" REPlace (replace current memo)\n");
printf(" SHow (show the current memo again)\n");
printf(" Up (move up one memo)\n");
printf(" Down (move down one memo)\n");
printf(" TOP (move to the top of the list\n");
printf(" TODay (display today’s memos)\n");
printf(" SAve (write the memos to disk)\n");

}

static void Help(void)
/**********************/
{

printf("Choose one of:\n");
ShowActions();
printf(" Quit\n");

}

static void DisplayTop(void)
/****************************/
{

printf("Top of memos.\n");
}

static int WantToQuit(void)
/***************************/

/* Check to see if the memos have been modified, but not saved.
* If so, query the user to make sure that he/she wants to quit
* without saving the memos.
*/

{
char buffer[MAXLEN];

if(!MemosModified || MemoHead == NULL) {
return(TRUE);

}
printf("\nThe memos have been modified but not saved.\n");
printf("Do you want to leave without saving them?\n");
gets(buffer);
return(tolower(buffer[0]) == ’y’);

}

218 The memos.c File

A Sample Program

static void BadFormat(void)
/***************************/
{

printf("Invalid format for memos file\n");
abort();

}

static void * MemoMAlloc(int size)
/**********************************/

/* Allocate the specified size of memory, dealing with the
* case of a failure by displaying a message and quitting.
*/

{
register char * mem;

mem = malloc(size);
if(mem == NULL) {

printf("Unable to allocate %d characters of memory\n",
size);

abort();
}
return(mem);

}

static void DisposeMemo(MEMO_EL * el)
/*************************************/

/* Dispose of a memo, including its lines.
*/

{
TEXT_LINE * tline;
TEXT_LINE * next;

tline = el->text;
while(tline != NULL) {

next = tline->next;
free(tline);
tline = next;

}
free(el);

}

The memos.c File 219

Appendices

220 The memos.c File

Glossary

K. Glossary

address An address is a location in a computer’s memory. Each storage location (byte) has an
address by which it is referenced. A pointer is an address.

aggregate An aggregate type is either an array or a structure. The term aggregate refers to the fact
that arrays and structures are made up of other types.

alignment On some computers, objects such as integers, pointers and floating-point numbers may be
stored only at certain addresses (for example, only at even addresses). An attempt to
reference an object that is not properly aligned may cause the program to fail. Other
computers may not require alignment, but may suggest it in order to increase the speed of
execution of programs.

C compilers align all objects that require it, including putting padding characters within
structures and arrays, if necessary. However, it is still possible for a program to attempt to
reference an improperly-aligned object.

The Open Watcom C16 and C32 compilers align structure members by default. A
command line switch, or the pack pragma, may be used to control this behavior.
Other objects may also be aligned by default.

See the User’s Guide for default values and other details.

argument An argument to a function call is an expression whose value is assigned to the parameter
for the function. The function may modify the parameter, but the original argument is
unaffected. This method of passing values to a function is often called call by value.

The argument may be a pointer to an object, in which case the function may modify the
object to which the pointer points, while the argument value (the pointer) is unaffected.

array An array is a set of objects of the same type, grouped into adjacent memory locations.
References to elements of the array are made by subscripts or indices.

assignment Assignment is the storing of a value into an object, which is usually done with the =
operator.

automatic storage duration
An object with automatic storage duration is created when the function in which it is
defined is invoked, and is destroyed when the function returns to the caller.

bit A bit is the smallest possible unit of information, representing one of two values, 0 or 1. If
the bit is 0, it is said to be off. If the bit is 1, it is said to be on.

A bit is not representable by an address, but is part of a byte, which does have an address.

Glossary 221

Appendices

Most processors, including the Intel 80x86 family of processors, have 8 bits in a
byte.

bit-field A bit-field is a type that contains a specified number of bits.

block A block is a part of a function that begins with { and ends with } and contains declarations
of objects and statements that perform some action. A block is also called a compound
statement.

byte A byte is the smallest unit of storage representable by a unique address, usually capable of
holding one character of information.

Most processors, including the Intel 80x86 family of processors, have 8 bits in a
byte.

cast To cast an object is to explicitly convert it to another type.

character constant
A character constant is usually one character (possibly a trigraph or escape sequence)
contained within single-quotes (for example, ’a’, ’??(’ and ’\n’).

The Open Watcom C16 and C32 compilers allow character constants with one,
two, three or four characters.

comment A comment is a sequence of characters, outside of a string literal or character constant,
starting with /* and ending with */. The comment is only examined to find the */ that
terminates it. Hence, a comment may not contain another comment.

compiler A compiler is a program which reads a file containing programming language statements
and translates it into instructions that the computer can understand.

For example, a C compiler translates statements described in this book.

compound statement
A compound statement is a part of a function that begins with { and ends with } and
contains declarations of objects and statements that perform some action. A compound
statement is also called a block.

declaration A declaration describes the attributes of an object or function, such as the storage duration,
linkage, and type. The space for an object is reserved when its definition is found. The
declaration of a function describes the function arguments and type and is also called a
function prototype. The declaration of a function does not include the statements to be
executed when the function is called.

decrement To decrement a number is to subtract (one) from it. To decrement a pointer is to decrease
its value by the size of the object to which the pointer points.

definition A definition of an object is the same as a declaration, except that the storage for the object
is reserved when its definition is found. A function definition includes the statements to be
executed when the function is called.

222 Glossary

Glossary

exception An exception occurs when an operand to an operator has an invalid value. Division by zero
is a common exception.

floating-point A floating-point number is a member of a subset of the mathematical set of real numbers,
containing (possibly) a fraction and an exponent. The floating-point type is represented by
one of the keywords float, double or long double.

function A function is a collection of declarations and statements, preceded by a declaration of the
name of the function and the parameters to it, as well as a possible return value. The
statements describe a series of steps to be taken after the function is called, and before it
finishes.

header A header contains C source, usually function prototypes, structure and union definitions,
linkages to externally-defined objects and macro definitions. A header is included using
the #include preprocessor directive.

identifier An identifier is a sequence of characters, starting with a letter or underscore, and consisting
of letters, digits and underscores. An identifier is used as the name of an object, a tag,
function, typedef, label, macro or member of a structure or union.

implementation-defined behavior
Behavior that is implementation-defined depends on how a particular C compiler handles a
certain case. All C compilers must document their behavior in these cases.

incomplete type
An incomplete type is one which has been declared, but its size or structure has not yet
been stated. An example is an array of items that was declared without specifying how
many items. The void type is also an incomplete type, but it can never be completed.

increment To increment a number is to add (one) to it. To increment a pointer is to increase its value
by the size of the object to which the pointer points.

index An index (or subscript) is a number used to reference an element of an array. It is an
integral value. The first element of an array has the index zero.

indirection Indirection occurs when an object that is a pointer to an object is actually used to point to it.
The unary form of the * operator, or the -> operator are used for indirection.

initialization The initialization of an object is the act of giving it its first (initial) value. This may be
done by giving an initialization value when the object is declared, or by explicitly assigning
it a value.

integer An integer is a type that is a subset of the mathematical set of integers. It is represented by
the keyword int, and has a number of variations including signed char, unsigned
char, short signed int, short unsigned int, signed int, unsigned
int, long signed int, long unsigned int, long long signed int and
long long unsigned int.

integral promotion
An object or constant that is a char, short int, int bit-field, or of enum type, that is
used in an expression, is promoted to an int (if int is large enough to contain all possible
values of the smaller type) or unsigned int.

Glossary 223

Appendices

keyword A keyword is an identifier that is reserved for use by the compiler. No object name or other
use of an identifier may use a keyword.

label A label is an identifier that corresponds to a particular statement in a function. It may be
used by the goto statement. default is a special label which is used with the switch
statement.

library function
A library function is a function provided with the C compiler that performs some
commonly needed action. The C language standard describes a set of functions that all C
compilers must provide. Whether or not the function actually generates a function call is
implementation-defined.

line A line is conceptually similar to a line as seen in a text editor. The line in a text editor may
be called a physical line. Several physical lines may be joined together into one logical line
(or just "line") by ending all but the last line with a \ symbol. C does not normally require
statements to fit onto one line, so using the \ symbol is usually only necessary when
defining macros.

linkage An object with external linkage may be referenced by any module in the program. An
object with internal linkage may be referenced only within the module in which it is
defined. An object with no linkage may only be referenced within the block in which it is
defined.

lint lint is a utility program, often provided with the compiler, which detects problems that the
compiler will accept as syntactically valid, but likely are not what the programmer
intended.

lvalue An lvalue is an expression that designates an object. The term originally comes from the
assignment expression,

L = R

in which the left operand L to the assignment operator must be a modifiable value. The
most common form of lvalue is the identifier of an object.

If an expression E evaluates to a pointer to an object, then *E is an lvalue that designates
the object to which E points. In particular, if E is declared as a "pointer to int", then both
E and *E are lvalues having the respective types "pointer to int" and int.

macro There are two kinds of macros. An object-like macro is an identifier that is replaced by a
sequence of tokens. A function-like macro is an apparent function call which is replaced by
a sequence of tokens.

module Referred to in the C language standard as a translation unit, a module is usually a file
containing C source code. A module may include headers or other source files, and have
conditional compilation (preprocessing directives), object declarations, and/or functions. A
module is thus considered to be a C source file after the included files and conditional
compilation have been processed.

name space A name space is a category of identifiers. The same identifier may appear in different
name spaces. For example, the identifier thing may be a label, object name, tag and
member of a structure or union, all at the same time, since each of these has its own name

224 Glossary

Glossary

space. The syntax of the use of the identifier resolves which category the identifier falls
into.

nesting Nesting is placing something inside something else. For example, a for statement may, as
part of its body, contain another for statement. The second for is said to be nested inside
the first. Another form of nesting occurs when source files include other files.

null pointer constant
The value zero, when used in a place where a pointer type is expected, is considered to be a
null pointer constant, which is a value that indicates that the pointer does not currently
point to anything. The compiler interprets the zero as a special value, and does not
guarantee that the actual value of the pointer will be zero.

The macro NULL is often used to represent the null pointer constant.

null character The character with all bits set to zero is used to terminate strings, and is called the null
character. It is represented by the escape sequence \0 in a string, or as the character
constant ’\0’.

object An object is a collection of bytes in the storage of the computer, used to represent values.
The size and meaning of the object is determined by its type. A scalar object is often
referred to as a variable.

parameter A parameter to a function is a "local copy" of the argument values determined in the call to
the function. Any modification of a parameter value does not affect the argument to the
function call. However, an argument (and hence a parameter) may be a pointer to an
object, in which case the function may modify the object to which its parameter points.

pointer An object that contains the address of another object is said to be a pointer to that object.

portable Portable software is written in such a way that it is relatively easy to make the software run
on different hardware or operating systems.

precedence Precedence is the set of implicit rules for determining the order of execution of an
expression in the absence of parentheses.

preprocessor The preprocessor:

• examines tokens for macros and does appropriate substitutions if necessary,
• includes headers or other source files, and,
• includes or excludes input lines based on #if directives

before the compiler translates the source.

recursion Recursion occurs when a function calls itself either directly, or by calling another function
which calls it. See recursion. (!)

register A register is a special part of the computer, usually not part of the addressable storage.
Registers may contain values and are generally faster to use than storage.

The keyword register may be used when declaring an object with automatic storage
duration, indicating to the compiler that this object will be heavily used, and the compiler
should attempt to optimize the use of this object, possibly by placing it in a machine
register.

Glossary 225

Appendices

return value A return value is the value returned by a function via the return statement.

rounding A value is rounded when the representation used to store a value is not exact. The value
may be increased or decreased to the nearest value that may be accurately represented.

scalar A scalar is an object that is not a structure, union or array. Basically, it is a single item,
with type such as character, any of the various integer types, or floating-point.

scope The scope of an identifier identifies the part of the module that may refererence it. An
object with block scope may only be referenced within the block in which it is defined. An
object with file scope may be referred to anywhere within the file in which it is defined.

sequence point A sequence point is a point at which all side-effects from previously executed statements
will have been resolved, and no side-effects from statements not yet executed will have
occurred. Normally, the programmer will not need to worry about sequence points, as it is
the compiler’s job to ensure that side-effects are resolved at the proper time.

side-effect A side-effect modifies a value of an object, causing a change in the state of the program.
The most common side-effect is assignment, whereby the value of the left operand is
changed.

signed A signed value can represent both negative and positive values.

The keyword signed may be used with the types char, short int, int, long int
and long long int.

statement A statement describes the actions that are to be taken by the program. (Statements are
distinct from the declarations of objects.)

static storage duration
An object with static storage duration is created when the program is invoked, and
destroyed when the program exits. Any value stored in the object will remain until
explicitly modified.

string A string is a sequence of characters terminated by a null character. A reference to a string
is made with the address of the first character.

string literal A string literal is a sequence of zero or more characters enclosed within double-quotes and
is a constant. Adjacent string literals are concatenated into one string literal. The value of
a string literal is the sequence of characters within the quotes, plus a null character (\0)
placed at the end.

structure A structure is a type which is a set of named members of (possibly different) types, which
reside in memory starting at adjacent and sequentially increasing storage locations.

subscript A subscript (or index) is a number used to reference an element of an array. It is a
non-negative integral value. The first element of an array has the subscript zero.

226 Glossary

Glossary

tag A tag is an identifier which names a structure, union or enumeration. In the declaration,

enum nums { ZERO, ONE, TWO } value;

nums is the tag of the enumeration, while value is an object declared with the
enumeration type.

token A token is the unit used by the preprocessor for scanning for macros, and by the compiler
for scanning the input source lines. Each identifier, constant and comment is one token,
while other characters are each, individually, one token.

type The type of an object describes the size of the object, and what interpretation is to be used
when using the value of the object. It may include information such as whether the value is
signed or unsigned, and what range of values it may contain.

undefined behavior
Undefined behavior occurs when an erroneous program construct or bad data is used, and
the standard does not impose a behavior. Possible actions of undefined behavior include
ignoring the problem, behaving in a documented manner, terminating the compilation with
an error, and terminating the execution with an error.

union A union is a type which is a set of named members of (possibly different) types, which
reside in memory starting at the same memory location.

unsigned An unsigned value is one that can represent only non-negative values.

The keyword unsigned may be used with the types char, short int, int,
long int and long long int.

variable A variable is generally the same thing as an object. It is most often used to refer to scalar
objects.

void The void type is a special type that really indicates "no particular type". An object that is
a "pointer to void" may not be used to point at anything without it first being cast to the
appropriate type.

The keyword void is also used as the type of a function that has no return value, and as the
parameter list of a function that requires no parameters.

Glossary 227

Index

A C

addition 84 call back function 159
address 221 call by value 221
address-of operator 67-69, 79 calling a function 76
aggregate 221 case label 91, 96, 180, 198
alignment 43, 82, 221 case sensitive 13
argc 106, 192 cast 63, 222
argument 221, 225 cast operator 58, 82
argv 106, 192 cdecl predefined macro 158
arithmetic conversion 40, 63 _cdecl predefined macro 158
array 24, 221 character constant 12, 31, 222

index 19, 24 wide 33
initialization 69 character set 11
specifying size 91 ASCII 135, 192
subscripting 76 EBCDIC 135

arrow operator 43, 78, 223 execution 11, 192
ASCII character set 135 source 11, 192
assignment 221 character type 194
assignment operator 89-90, 221 comma operator 91
associativity of operators 73 comment 12, 14, 154, 222
audit trail 154 commenting out 114
auto 67 common error

initialization 66, 69 ; in #define 143
automatic storage duration 66, 93, 103, 147, 221 = instead of == 141

dangling else 143
delayed error from included file 142
missing break in switch 144
mixing operator precedence 142B
side-effects in macros 145

compact memory model 48, 52, 123, 125, 199
compatible types 63

base operator 57 compiler 222
_based predefined macro 158 complement operator 80
basic type 18 complete data hiding 132
big code 48 compound assignment 90
big data 48, 199 compound statement 16-17, 93, 96-97, 222
bit 221 conditional compilation 110
bit-field 44-45, 91, 197, 222 conditional operator 89
bitwise AND 86 const 59
bitwise complement 80 constant 29
bitwise exclusive OR 87 #define 113, 143, 148, 152
bitwise inclusive OR 87 character 31, 222
bitwise NOT 80 enumeration 113, 143, 148, 152
block 93, 96-97, 222 floating-point 30
block scope 17 integer 29
break statement 96, 100, 153 manifest 113, 143, 148, 152
byte 222 string-literal 34

constant expression 91
in #if or #elif 92

continuation lines 109, 127, 179

229

Index

continue statement 98-99 enumeration name 13
in a do 99 equal to 86
in a for 100 escape sequences 32, 109, 127, 163, 193, 222
in a while 99 _except predefined macro 159

controlling expression 94, 142 exception 223
conversion execution character set 11

float to integer 39 _export predefined macro 159
integer to float 39 expression 73
signed integer 37 constant 91
type 37 precedence 73, 165
unsigned integer 37 primary 75

converting types explicitly 82 priority 73, 165
creating an external object 65 extern 24
cross-compile 11 extern storage class 65

external linkage 13, 64-65, 77, 137, 152, 159
external object

creating 65
D

F
data hiding 132

complete 132
partial 133

declaration 222 far 48-49
of function 15 far pointer 49
of object 15 far predefined macro 50, 158

decrement 78-79, 222 _far predefined macro 50, 158
default argument promotion 40, 102 _far16 predefined macro 158
default label 96 _fastcall, predefined macro 158
defining a type 22 file scope 17
definition 15, 222 _finally predefined macro 159
diagnostic 191 float
difference 84 conversion to integer 39
division rounding 39

rounding 83 floating-point 223
truncation 83 constant 30

do statement 97 emulation 21-22
dot operator 42, 78 limits 185

number 21
FLT_ROUNDS predefined macro 39
for statement 91, 98
form feed 11E
fortran predefined macro 158
_fortran predefined macro 158
function 223

EBCDIC character set 135 call 76
ellipsis 77 call back 159
else statement 95 declaration 15
empty statement 94 definition 101
emulation designator 75

floating-point 22 far 48
entry point 106 main 106, 148
enumerated type 22-23 name 13
enumeration constant 13, 22, 91

230

Index

near 48 implementation-specific behavior 5, 11, 13-14,
prototype 50, 53, 104 18-23, 33, 35, 37-39, 41, 43-45, 47, 50-51,
recursion 77, 103 68, 81-85, 107, 110-111, 122-123, 179,
scope 17 190, 221-222
type 18 include 109

function prototype scope 17 nested 110
functional interface 132 included file 152

incomplete type 24, 223
increment 78-79, 223
index 19, 24, 221, 223
indirection 223G
indirection operator 79, 223
initialization 69, 91, 223

array 69
glossary 6 auto 66, 69
goto statement 94, 99, 153, 224 static 69
grammar struct 71

C language 167 union 71
greater than 85 input/output 5
greater than or equal to 85 integer 223

constant 29
conversion 37
conversion to float 39H division 83

rounding 83
truncation 83

limits 181header 12, 104, 109, 131, 198, 223
integral promotion 37, 40, 63, 223<float.h> 21, 39, 138, 181
internal linkage 64-65, 152<limits.h> 20, 181
interrupt 159<malloc.h> 55
interrupt predefined macro 159<stdarg.h> 104
_interrupt predefined macro 159<stddef.h> 33, 35, 47, 81, 84, 126
iteration 97including 109

hiding data 132
history 3
horizontal tab 11 Khosted 123
huge memory model 48, 84, 124-125, 196, 199
huge pointer 51
huge predefined macro 51, 158 keyword 12, 18, 55, 157, 168, 173, 224
_huge predefined macro 51, 158 auto 15, 17, 61, 67, 103, 201

_ _based 55, 158
break 96, 99-100, 144, 153
_ _builtin_isfloat 160I case 91, 96, 180, 198
_Cdecl 158
_ _cdecl 158
char 18-19, 27, 33-35, 37, 44, 47, 53-54, 75,identifier 12-13, 223

77, 102, 137, 182, 194, 223, 226-227external 13
const 18-19, 59-60, 75, 90significant characters 13
continue 98-99reserved 14
default 96, 224if statement 95
do 97, 99, 179implementation-defined behavior 5, 137, 191, 223

231

Index

double 18-19, 21, 30, 39-40, 77, 102, 105, 137, _ _segment 55-57, 158
185, 223 _ _segname 55, 158

else 95-96, 143-144 _ _self 55, 158
enum 9, 223 short 18-20
_Except 159 short int 19-20, 37, 44, 77, 102, 183, 223,
_ _except 159 226-227
_Export 159 short signed int 223
_ _export 159 short unsigned int 223
extern 15, 61, 65-67, 93, 101, 103, 152, 159, signed 18-20, 37, 44, 137, 182, 194, 226-227

201 signed char 181, 194, 223
_Far16 158 signed int 29, 37, 44-45, 62, 197, 223
_ _far16 53-54, 83, 158 signed long 29
_ _far 49-53, 82-83, 158, 203 signed long int 38
_Fastcall 158 signed short int 20, 37-38
_ _fastcall 158 size_t 81, 126, 195
_Finally 159 sizeof 81, 91, 110, 195
_ _finally 159 static 15, 61, 65-67, 101, 103, 152, 201
float 18-19, 21, 30, 39-40, 50, 77, 102, 137, _ _stdcall 159

185, 195, 223 struct 43, 62, 132-133
for 67, 91, 97, 99-100, 179, 225 switch 96, 100, 144, 179-180, 198, 224
_ _fortran 158 _Syscall 158
goto 93-94, 99-100, 153, 224 _ _syscall 158-159
_ _huge 51, 82, 158, 203 _System 158
if 95-96, 110, 141, 144, 150, 179 _Try 159
int 18-20, 22-23, 31, 33, 37, 40, 44-45, 47, 54, _ _try 159

61, 77, 80, 84-86, 88, 101-102, 104-105, typedef 59-62, 143, 148
113, 137, 183-184, 196-198, 201, union 132
223-224, 226-227 unsigned 18-20, 37, 44, 137, 182, 194, 227

int long unsigned 63 unsigned char 37, 44, 182, 194, 223
_ _interrupt 159, 205 unsigned int 29, 37, 44, 81-83, 184, 195, 197,
_Leave 159 223
_ _leave 159 unsigned long 20
list of 12 unsigned long int 20, 29, 38, 63, 82, 184
_ _loadds 159 unsigned long long int 185
long 18-20 unsigned short 33, 35
long double 21, 30, 39, 105, 185, 223 unsigned short int 37-38, 44, 183
long int 19-20, 29, 37, 84, 105, 137, 184, va_list 104

195-196, 226-227 void 16, 18, 47, 58-59, 75, 79, 81-82, 84, 86,
long long int 19, 105, 184-185, 226-227 89-90, 94, 100-101, 223, 227
long long signed int 223 volatile 18-19, 60, 64, 90
long long unsigned int 223 _ _watcall 159
long signed int 223 wchar_t 33, 35, 69
long unsigned int 223 while 94, 97, 99, 179
_ _near 50-53, 82-83, 158, 203
_ _ow_imaginary_unit 159
_Packed 43, 158
_Pascal 158 L
_ _pascal 158
ptrdiff_t 84, 196
register 15-16, 61, 67-68, 79, 102-103, 105,

label 93, 224197, 201, 225
name 13return 99-100, 103, 107, 226

large memory model 48, 52, 124-125, 199_ _saveregs 159
leading underscore 14_Seg16 54, 83, 158

232

Index

_leave predefined macro 159 predefined 39, 47, 50-51, 55, 104-105,
left shift 84 122-126, 158-159, 199, 225
length of a string 26 _ _386_ _ 125
less than 85 _ _CHAR_SIGNED_ _ 125
less than or equal to 85 _ _CHEAP_WINDOWS_ _ 124
library function 5, 109, 145, 148, 224 _ _COMPACT_ _ 123

_bheapseg 57 _ _DATE_ _ 122, 199
_dos_setvect 159 _ _DOS_ _ 124
exit 107 _ _FILE_ _ 123
getc 142 _ _FLAT_ _ 123
getchar 59 _ _FPI_ _ 125
isalpha 135 _ _func_ _ 123
malloc 81, 113 _ _FUNCTION_ _ 124
mbtowc 33, 35 _ _HUGE_ _ 124
memcpy 81, 94 _ _INLINE_FUNCTIONS_ _ 125
printf 104-105, 114, 144 _ _LARGE_ _ 124
rewind 58 _ _LINE_ _ 123

line 224 _ _MEDIUM_ _ 124
continuation 109, 127, 179 _ _NETWARE_386_ _ 124
logical 109, 179 _ _NT_ _ 124
physical 109 _ _OS2_ _ 124

linkage 224 _ _QNX_ _ 124
external 13, 64-65, 77, 152, 159 _ _SMALL_ _ 124
internal 64-65, 152 _ _STDC_ _ 123
no 64-65 _ _STDC_HOSTED_ _ 123

linker _ _STDC_LIB_EXT1_ _ 123
case sensitive 13 _ _STDC_VERSION_ _ 123
external identifer 13 _ _TIME_ _ 123, 199

significant characters 13 _ _WATCOMC_ _ 125
linking 127 _ _WINDOWS_ _ 124
lint 224 _ _WINDOWS_386_ _ 124
_loadds predefined macro 159 _based 158
logical AND 88 _cdecl 158
logical NOT 80 _except 159
logical OR 88 _export 159
long names 137 _far 50, 158
loop forever 99 _far16 158
looping 97 _fastcall, 158
lvalue 74-75, 224 _finally 159

modifiable 75 _fortran 158
_huge 51, 158
_interrupt 159
_leave 159
_loadds 159M
_M_IX86 125
_near 51, 158
_NULLOFF 55

macro 224 _NULLSEG 55
defining 113 _pascal 158
function-like 113 _saveregs 159
numerical limits 181 _segment 158
object-like 113 _segname 158
offsetof 126 _self 158

_stdcall, 159

233

Index

_syscall 159 modifier
_try 159 type 18
cdecl 158 modularity 131
far 50, 158 module 224
FLT_ROUNDS 39 module name 132
fortran 158 modulus 83
huge 51, 158 multibyte character 12, 33, 35
interrupt 159
M_I386 125
M_I86 125
M_I86CM 125 N
M_I86HM 125
M_I86LM 125
M_I86MM 125

nameM_I86SM 125
enumeration 13MSDOS 125
function 13near 51, 158
label 13NO_EXT_KEYS 126
macro 13NULL 47, 55, 126, 199, 225
mixed case 147pascal 158
object 13va_arg 105
scope 17va_end 105
structure 13va_start 104-105
structure member 13undefining 115
union 13variable argument 104-105
union member 13va_arg 105
variable 13va_end 105

name space 62, 224va_start 104
enumeration 22macro name 13
labels 93main 106
structure members 41parameters to 106
structures 41return value 107
union members 45manifest constant 113, 143, 148, 152
unions 45math chip 22

naming modules 132math coprocessor 22
near 48-49medium memory model 48, 51-52, 124-125, 199
near pointer 50member 41
near predefined macro 51, 158of structure 43, 77
_near predefined macro 51, 158of union 77
negativememory model 47

unary 80big code 48
nesting 225big data 48, 199

include 110compact 48, 52, 123, 125, 199
new line 11huge 48, 84, 124-125, 196, 199
new type 22large 48, 52, 124-125, 199
no linkage 64-65medium 48, 51-52, 124-125, 199
non-graphic charactersmixing 49

escape sequences 32, 163, 193small 47, 52, 124-125, 199
not equal to 86small code 48
not greater than 85small data 48, 199
not less than 85minus
NOT operatorbinary 84

bitwise 80unary 80
logical 80modifiable lvalue 75

234

Index

notation 9 >= 85
null >>= 90

character 25-26, 34, 69, 225 ? 89
macro 47 ^ 87
pointer 47, 90, 126, 199, 225 ^= 90
statement 94 addition 84

NULL macro 126, 199 address-of 67-69, 79
NULL predefined macro 47, 55, 126, 199, 225 arrow 43, 78, 223
numeric coprocessor 22 assignment 89-90
numerical limits 181 associativity 73

floating-point 185 binary & 86
integer 181 binary * 83

binary + 84
binary - 84
bitwise AND 86
bitwise complement 80O
bitwise exclusive OR 87
bitwise inclusive OR 87
bitwise NOT 80

object 13, 225, 227 cast 58, 82
declaration 15 comma 91
initialization 69 complement 80
type 18 compound assignment 90

offset of member 126 conditional 89
offsetof 126 difference 84
ones complement 80 division 83
operand 73 dot 42, 78
operator 73 equal to 86

! 80 greater than 85
!= 86 greater than or equal to 85
% 83 indirection 79, 223
%= 90 left shift 84
& 67, 69, 79, 86 less than 85
&& 88 less than or equal to 85
&= 90 logical AND 88
* 79, 223 logical NOT 80
*= 90 logical OR 88
++ 78-79 modulus 83
+= 90 negative 80
, 91 not 80
-- 78-79 not equal to 86
-= 90 not greater than 85
-> 43, 78, 223 not less than 85
. 42, 78 plus 80
/ 83 pointer 79
/= 90 post-decrement 78
1’s complement 80 post-increment 78
:> 57 postfix 76
< 85 pre-decrement 79
<<= 90 pre-increment 79
<= 85 precedence 73, 165
= 90, 221 priority 73, 165
== 86 product 83
> 85 quotient 83

235

Index

remainder 83 on the 8086 136
right shift 85 segment 48, 52
1 selector 52-53
simple assignment 90 to void 47, 82
sizeof 81, 195 pointer operator 79
subtraction 84 portable 135, 225
sum 84 post-decrement 78
times 83 post-increment 78
unary 79 postfix operator 76
unary & 79 pre-decrement 79
unary * 79, 223 pre-increment 79
unary minus 80 precedence 73, 165, 225
| 87 predefined macro 122-123
|= 90 preprocessor 109, 225
|| 88 preprocessor directive
~ 80 # 109

order of operation 73, 165 #define 109, 113, 115, 123
order of translation 127 # operator 115
OS/2 convention 158 ## operator 115
output 5 #elif 91-92, 110-111

#else 110-111
#endif 110-111
#error 122
#if 14, 91-92, 110-111, 138, 179, 181, 225P
#ifdef 112
#ifndef 112
#include 109-110, 127, 143, 179, 223

parameter 221, 225 #line 121-123
to main 106, 192 #pragma 43, 54, 122, 158-159, 199

argc 106, 192 #undef 115, 119-120, 123
argv 106, 192 null 109

parentheses 73 __VA_ARGS__ 117
partial data hiding 133 primary expression 75
pascal predefined macro 158 priority of operators 73
_pascal predefined macro 158 procedural interface 132
pitfall product 83

; in #define 143 production 75
= instead of == 141 programming style 147
dangling else 143 promotion
delayed error from included file 142 integer 37
missing break in switch 144 prototype
mixing operator precedence 142 function 104
side-effects in macros 145 ptrdiff_t 84, 196

plus
binary 84
unary 80

plus operator 80 Q
pointer 46, 225

far 49
far16 53
huge 51 qualifiers 18
near 50 quotient 83
null 47, 90, 199, 225
offset 48, 52-53

236

Index

break 96, 100, 153
compound 16-17, 93, 96-97R continue 98-99
do 97
empty 94
for 91, 98recursion 77, 103, 225
goto 94, 99, 153, 224reducing recompile time 131
if 95reference to structure member 42
iteration 97register 67, 105, 225
label 93remainder 83
looping 97reserved identifier 12, 14
null 94resource manager 132
return 100return statement 100
selection 94return value 226
switch 96, 180, 198right shift 85
while 97rounding 39, 83, 226

static 64
initialization 69

static storage class 65
static storage duration 103, 148, 152, 159, 226S
_stdcall, predefined macro 159
storage class 61

auto 67
extern 24, 65_saveregs predefined macro 159
following a type specifier 61scalar 226
register 67, 105scope 17, 61, 66, 226
static 64-65block 17

storage durationfile 17
automatic 93, 103, 147function 17
static 103, 148, 152, 159function prototype 17

string 26, 75, 222, 226_segment predefined macro 158
length 26_segname predefined macro 158

string literal 12, 26, 34, 75, 179, 222, 226selection statement 94
wide 35, 179_self predefined macro 158

structsequence point 226
initialization 71shift

structure 41, 226left 84
bit-field 44right 85
member 13, 41, 43, 77side-effect 226

name 13sign extension 38
member reference 42signed 226
name 13simple assignment 90

style 147size_t 81, 126, 195
aligning declarations 151sizeof operator 81
case rules 147small code 48
comments 154small data 48, 199
complicated statements 153small memory model 47, 52, 124-125, 199
consistency 147source character set 11
function prototypes 152spaghetti code 99, 153
goto 153specifier
included files 152storage class 16
indenting 149type 18
object names 149standard conforming 123
reusing names 152statement 93, 226

237

Index

small functions 151 volatile 60
static objects 152 type definition 13, 61, 148

subscript 76, 221, 226 typedef 13, 61
subtraction 84
sum 84
switch statement 96, 180, 198
syntax U

C language 167
_syscall predefined macro 159
system dependencies 133

unary operator 79
& 79
* 79, 223
+ 80T
- 80
minus 80
negative 80

tag 22, 41, 227 plus 80
termination status 107 undefined behavior 227
tilde 80 undefining a macro 115
token 227 underscore
translation limits 179 leading 14
translation order 127 uninitialized objects 72
trigraphs 11, 33, 109, 127, 161, 222 union 45, 227
truncation 83 initialization 71
_try predefined macro 159 member 13, 77
type 18, 227 name 13

array 24 name 13
basic 18 unsigned 227
char 19, 137, 194 unsigned integer conversion 37
compatible 63 usual arithmetic conversion 40
const 59
conversion 37
defining 22
double 21 V
enumerated 22-23
float 21, 137
floating-point 21

va_arg 105int 137
va_arg predefined macro 105integer 19
va_end 105long 19
va_end predefined macro 105long double 21
va_list type 104long long 19
va_start 104modifier 18
va_start predefined macro 104-105new 22
variable 227pointer 46-47

type 18qualifiers 18
variable argument list 104short 19
variable argument macros 117specifier 16, 18
variable name 13string 26
vertical tab 11structure 226
visually aligning object declarations 151union 227
void 47, 58, 227va_list 104

pointer to 82void 58, 227
volatile 60

238

Index

W

wchar_t 33, 35, 69
while statement 97
wide character constant 33
wide string literal 35, 179
Win32 convention 158-159

239

